Search published articles


Showing 4 results for Supersonic Flow

Mohammad Reza Soltani, Mahdi Abedi, Javad Sepahi Younsi,
Volume 14, Issue 16 (3-2015)
Abstract

An extensive experimental study has been conducted to investigate the performance and stability of a supersonic axisymmetric mixed compression air intake designed for a free stream Mach number of 2.0. Unstable flow conditions, where the self-sustained oscillations of the shocks waves occur, have been studied in this investigation. Aside from the buzz triggering mechanism, the paper describes the flow phenomenon sequences during the buzz cycle by means of the shadowgraph pictures and via high frequency pressure transducers. Results showed that the pressure inside the intake decreases and increases sequently during the buzz cycle. The intake becomes almost empty (its mass flow rate decreases) as the shock wave moves upstream toward the intake tip. When the shock waves stand at its most upstream location, the pressure inside the intake reaches its minimum value. This low pressure condition causes the shock wave to move toward the intake and consequently the intake pressure increases again. As the pressure inside the intake increases, the shock wave moves upstream. The intake pressure reaches its maximum value when the shock wave stands at the intake entrance and the buzz cycle is then completed.
D. Mokhtari , M. Hojaji , M. Afrand ,
Volume 19, Issue 5 (5-2019)
Abstract

In this study, the effect of a cylindrical protuberance on the thrust vector of a supersonic jet was investigated as a new method in thrust vector control. For this purpose, a convergent-divergent nozzle was designed and constructed. This nozzle is such that the Mach number is its nominal output in full expansion conditions 2. The wall of the nozzle is equipped with pressurized holes to measure pressure variations. Also, there is a duct wall in the nozzle wall to apply a protuberance inside the nozzle. Pressure sensors for pressure measurement and also the schlieren system are used to check the outlet flow field. The total pressure of the compartment is constant at all tests and is 5.7bar. The results of this study show that the depth of penetration of the protuberance in the flow field has a significant effect on the amount of deviation and even the direction of the deviation of the jet stream exited from the convergent-divergent nozzle. The maximum jet outlet flow from the nozzle is 5.7degrees, which occurred at a rate of H/D*=0/4. In addition, these results indicate that with the increase in bulge penetration within the nozzle, the nozzle axial thrust has slightly decreased.

M.r. Babaeyan , M. Hojaji,
Volume 19, Issue 7 (7-2019)
Abstract

In this study, the effect of the use of dual protuberances as a thrust vector control method in a supersonic convergent-divergent nozzle with a Mach number of 2 is experimentally investigated. The nozzle total pressure in all experiments is considered constant. Air is the working fluid in these experiments. The used protuberances are two cylindrical elements that are placed in front of the flow in the divergent part of the nozzle. These protuberances are installed at 60% and 90% of the length of the nozzle divergent portion from the nozzle throat and are simultaneously applied in the main flow path. The protuberances are installed in opposite walls. Effect of changing the penetration ratio of the protuberances [H/D] on the thrust vector angle and the components of the thrust vector is obtained by measuring the forces acting on the nozzle. Also, the flow field was measured by a Schlieren system, as well as, the pressure variations on the nozzle walls were measured. The results show that the use of dual protuberances can have a significant effect on the angle of the thrust vector and increase the angle of the thrust vector up to 4.35 degrees in the implemented conditions of this study. Also, the results reveal that this method can reduce the axial component of thrust up to 5.5% in the worst case of implemented conditions.
 

A. Sharafi, D. Mokhtari,
Volume 20, Issue 5 (5-2020)
Abstract

In this research, the effect of several unconventional obstructions with cubic, spherical, cylindrical, and cone geometries on the propulsion vector of a convergent-divergent micro nozzle as a new method in propulsion vector control is experimentally investigated. For this purpose, a convergent-divergent nozzle was designed and constructed in small dimensions. This nozzle is such that the Mach number is its nominal output in full expansion conditions 2. The wall of this nozzle is designed to measure pressure variations with pressure holes. Also, in the nozzle wall, a duct has been created to apply a bulge inside the nozzle. Pressure sensors and the shadograph system have been used to pressure measurement and check the outlet flow field respectively. The total pressure of the calming chamber is constant in all experiments and is equal to 5.5 times. The results of this study show that the maximum deviation is related to an obstruction with a cubic geometry which is 2.1 degrees. Also, the geometries that have sharp corners are more shock-shaped and hit the opposite wall. In this research, the shock formed by a cubic barrier has hit the opposite wall, but with a spherical shaped and cone-shaped barrier, the shock comes out from the nozzle. Also, these results indicate that the axial force of the nozzle has been reduced to a very small extent.


Page 1 from 1