Search published articles


Showing 4 results for Thermal Buckling

Mehrdad Jabbarzadeh, , Mahmood Khosravi,
Volume 12, Issue 5 (1-2013)
Abstract

In this paper, the thermal buckling behavior of circular plates with variable thicknesses made of bimorph functionally graded materials, under uniform thermal loading circumstances, considering the first-order shear deformation plate theory and also assumptions of von Karman has been studied. The material characteristics are symmetric to the middle surface of the plate and, based on the power law, vary along with thickness; where the middle surface is intended pure metal, and the sides are pure ceramic. In order to determine the distribution of pre-buckling force in the radial direction, the membrane equation is solved using the shooting method. And the stability equations are solved numerically, with the help of pseudo-spectral method by choosing Chebyshev functions as basic functions. The numerical results in clamped and simply supported boundary conditions and the linear and parabolic thickness variations are presented. And the influence of various parameters like volume fraction index, the thickness profile and side ratio on the buckling behavior of these plates has been evaluated.
Mehrdad Jabbarzadeh, ,
Volume 13, Issue 2 (5-2013)
Abstract

Abstract - In this article , thermal buckling analysis of functionally graded annular sector plate is studied. The mechanical and thermal properties of the functionally graded sector plate are assumed to be graded in the thickness direction . The equilibrium and stability equations are derived based on the first order shear deformation plate theory (FSDT) in conjunction with nonlinear von-karman assumptions. Differential quadrature method is used to discretize the equilibrium and stability equations. In this method a non-uniform mesh point distribution (Chebyshev-Gauss-Lobatto) is used for provide accuracy of solutions and convergence rate . By using this method, there is no restriction on implementation of boundary conditions and various boundary conditions can be implemented along any edges . Finally, The results compared with other researches and the effects of plate thickness, sector angle, annularity, power law index and various boundary conditions on the critical buckling temperature are discussed in details .
Jalal Torabi, Majid Bazdid-Vahdati, Reza Ansari,
Volume 15, Issue 10 (1-2016)
Abstract

In the present study, thermal buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) conical shells is presented. The effective material properties of FG-CNTRCs are determined using the extended rule of mixture. By employing the Hamilton’s principle and based on first-order shear deformation theory and Donnell strain-displacement relations, the governing equations are obtaind. The membrane solution of linear equilibrium equations is considered to obtain the pre-buckling force resultants. Using the generalized differential quadrature method in axial direction and periodic differential operators in circumferential direction, the stability equations are discretized and the critical buckling temperature difference of shell is obtained. The accuracy of the present work are first validated by the results given in the literature and then the impacts of involved parameters such as volume fractions and types of distributions of carbon nanotubes, boundary conditions and geometrical parameters on thermal buckling of functionally graded nanocomposite conical shell are investigated. The results indicate that the values of volume fractions and types of distributions of carbon nanotubes along the thickness direction play an important role on thermal instability of FG-CNTRC conical shells.
I. Ghoytasi, O. Rahmani,
Volume 19, Issue 12 (12-2019)
Abstract

In this paper, the effects of unified temperature loading and Winkler-Pasternak elastic foundation on the vibration of functionally graded curved nanobeam have been studied. The proposed model is based on the modified couple stress theory and the Timoshenko beam model. The continuous distribution of material along the thickness of functionally graded curved nanobeam is achieved by changing the gradient index in the volume fraction. The governing equations and related boundary conditions are obtained using the Hamilton principle. By analyzing the quantitative and qualitative results in the tables and figures, influences of geometrical and thermo-physical parameters such as gradient index, aspect ratio, unified temperature difference, the ratio of thickness to length scale parameter and arc angle of functionally graded curved nanobeam on the natural frequency for different vibration mode have been interpreted. There is an excellent agreement between the present results and the results of the previous works. Applied temperature loading increases the sensitivity of the natural frequency to the changes in the aforementioned parameters and also increases the range of its changes. Also, applying the Pasternak elastic foundation changes the behavior of the natural frequency to the temperature changes.


Page 1 from 1