Showing 3 results for Ti-6al-4v Titanium Alloy
Hossein Amirabadi, Abolfazl Foorginejad, Milad Ahmadi Mojavery,
Volume 14, Issue 16 (3-2015)
Abstract
Abrasive water jet cutting process can produce tapered edges on cutting kerf. This problem can limit the applications of abrasive water jet cutting process and in some cases it is necessary another edge preparation process. In this paper, an experimental investigation kerf characteristics of Ti-6Al-4V titanium alloy under abrasive water jet cutting is presented. In this regards, it is shown how to use the hybrid approach of Taguchi method and principal component analysis to optimize abrasive water jet cutting are used in this paper. The abrasive water jet cutting process input parameters effect on material removal rate and the characteristics of the surface. A considerable effort was made in understanding the influence of the system operational process parameters such as water jet pressure, traverse speed, abrasive flow rate, and standoff distance. Due to appropriate selecting abrasive water jet cutting process parameters leads to optimizing of kerf characteristics include top kerf width, kerf tapper and kerf deviation, therefore it is important to select appropriate input parameters. The obtained results from this method show that the hybrid approach of Taguchi method and principal component analysis is a suitable solution for optimizing of abrasive water jet cutting process.
Hossein Rostami, Salman Nourouzi, Hamed Jamshidi Aval,
Volume 16, Issue 4 (6-2016)
Abstract
Friction stir welding (FSW) has many advantages in welding dissimilar joints in comparison with fusion welding methods. In this study, weld ability of butt joint of 5052 aluminum alloy and Ti-6Al-4V titanium alloy by FSW process has been studied and discussed. The welding was successfully performed by using a tool with frustum pin. The influences of both rotational and traverse speed of welding tool on mechanical properties are investigated. The results show that the metallurgical and mechanical properties improve by choosing appropriate parameters. The highest tensile strength of 260 MPa was obtained at rotational speed of 500 rpm and a 40 mm/min traverse speed, which was ~ 94% of the aluminum base metal tensile strength. As a result of increasing the rotational speed from 500 to 1000 rpm, high heat input can forms cracks at joint area. In rotational speed of 1000 rpm, increasing traverse speed from 40 to 56 mm/min leads to a sound joint with 192 MPa of tensile strength. This decreasing in tensile strength can be related to the formation of intermetallic compounds such as TiAl3, along the entire interface between the two alloys
, ,
Volume 22, Issue 10 (10-2022)
Abstract
In ultrasonic vibration-assisted turning, an ultrasonic vibration is added to the tool, which leads to the periodical disengagement of the tool and the work-piece. In this research, an experimental study of ultrasonic vibration-assisted turning and conventional turning on Ti6Al4V Titanium alloy is conducted. First, by analyzing different parameters, four parameters are selected as the main affecting input parameters (cutting speed, feed rate, depth of cut, and ultrasonic vibration), and the effects of these four parameters are studied on two output parameters, namely tool wear and surface roughness. After the experimental tests, a statistical analysis is performed on the results and a neural network model is developed to predict the tool wear and surface roughness. The results show that the developed neural network model has a good agreement with the experimental results. In all experiments using ultrasonic vibrations, the tool wear and surface roughness were lower in comparison with the conventional turning. The cause of the tool wear and surface roughness reduction in ultrasonic mode are reducing the average forces applied to the tool, the alternative disengagement between the tool and the workpiece and increased dynamic stability of the process.