Search published articles


Showing 3 results for Tool Wear Ratio

Behzad Jabbaripour, M Sadeghi, , ,
Volume 11, Issue 2 (9-2011)
Abstract

Due to outstanding properties of γ–TiAl intermetallic such as high resistance against fatigue, oxidation, corrosion, creep, dynamic vibration, high working temperature and also its application in aerospace and automotive industry, turbojet engines and blade manufacturing; in this paper, electrical discharge machining (EDM) of γ–TiAl intermetallic by means of three kinds of tool electrodes including copper, graphite and aluminum is investigated, to compare the output characteristics of the machining process such as material removal rate, tool wear ratio, surface roughness and topography and EDS elemental analysis of machined surfaces. The results indicate that major elements in chemical composition of γ–TiAl machined surfaces are including titanium, aluminum, carbon and oxygen. The variation of tool material has not significant effect on formation of different chemical compounds and phases or in other words surface modification of machined surface. While it mainly affects other aspects of output characteristics such as material removal rate, tool wear ratio and surface roughness.
Ahad Gholipoor, Hamid Baseri, Mohsen Shakeri,
Volume 14, Issue 1 (4-2014)
Abstract

The near dry EDM process uses a mixture of a liquid and a gas as dielectric medium. In this study, near dry EDM process at three levels of discharge energy and with two brass and copper electrode was studied to investigate the effects of tool material on machining performance. Also, the Taguchi method of design of experiments technique was employed to study the effects of nonelectrical parameters such as tool rotational speed, liquid flow rate, gas pressure and also discharge energy on material removal rate (MRR), electrode wear ratio (TWR) and surface roughness (SR) and also the analysis of variance (ANOVA) was employed to find the most important factors effecting MRR, TWR and SR. The results showed that copper electrode has higher MRR and lower TWR as compared to brass electrode. Also the analysis of main effect plots obtained by Taguchi method indicated that MRR and SR is enhanced by increasing water flow rate and discharge energy and also increasing gas pressure leads to lower TWR. The ANOVA results showed that discharge energy is the most important factor influencing MRR, TWR and SR.
Gouhar Ranjbari,
Volume 23, Issue 10 (10-2023)
Abstract

In this paper, tool and workpiece wear ratio and surface roughness in the removal process of Ti-6Al-4V by spark are modeled using fuzzy algorithm. In the machining process using a spark, a copper electrode is used as a tool and equal channel angular pressing (ECAP) process is applied to the tool. In this combined modelling the number of ECAP passes, current, spark presence time and spark absence time are used as input parameters. The evaluation and validation results of fuzzy modeling, using experimental data, show that the fuzzy algorithm is capable of modeling and establishing relationships between response variables based on input parameters with high accuracy. Therefore, by using this method, one can easily predict the response variables and avoid the need of conducting experiments that require spending a lot of time and cost.

Page 1 from 1