Search published articles


Showing 28 results for Transient


Volume 5, Issue 0 (0-2005)
Abstract

Gas sensitive metal oxide layers used in fabrication of resistive gas sensors are prepared by different deposition techniques. The technical data reported on some basic and practically important specifications of these devices, although fabricated based on the same gas sensitive oxide, are anomalously different. The influence of the fabrication technique used for the deposition of the gas sensitive layer on determination of the significant specifications of the transient response of a resistive gas sensor is experimentally investigated for the first time. ZnO and SnO2 layers were prepared by LPCVD, PVD, EPD and powder pressing techniques. Prototype gas sensors based on these layers were fabricated. The transient responses of these devices to a step change in the composition of the surrounding atmosphere were recorded and compared. It was shown that the thickness, porosity and pore micro-structure of the gas sensitive layer are the most effective parameters in determination of the transient response. The relationship between these parameters and the temporal variation of the electrical conductivity of the gas sensitive layer was qualitatively analyzed. Oxide layers of higher porosity resulted in gas sensors of faster response, but response time increased with the thickness of these gas sensitive layers. The sensors produced by EPD technique demonstrated the fastest responses while those produced by CVD were the slowest among the samples investigated.

Volume 8, Issue 1 (0-2008)
Abstract

Thyristor-Controlled Series Compensator (TCSC) is one of the electric power lines series compensators. TCSC increases transmission system capacity and improves system dynamic and voltage stability. Several controllers have been proposed, but most of them generally improve one of TCSC capabilities. In this paper a TCSC robust controller is designed based on Nonlinear Quantitative Feedback Theory (QFT). This controller improves both of small signal and transient stability of power system.
, Aziz Azimi, ,
Volume 13, Issue 8 (11-2013)
Abstract

Numerical simulation of non-isothermal transient gas flow is performed using implicit Steger-Warming finite difference method. Because of nonlinearity of the governing equations, they are linearized at each time step. The linearization either reduces computational effort or analyzes the flowfield more conveniently. In order to validate and evaluate the accuracy of current numerical method, Fanno and shock tube flows are investigated first. Then, transient flow in a gas pipeline that its inlet pressure changes with time is simulated. The results of present study show that Steger-Warming finite difference scheme can well captured the sudden changes in the flowfield. Moreover, the present method is able to analyze transient gas flows as nearly accurate as the nonlinear one with less computational effort.
, , ,
Volume 13, Issue 10 (1-2014)
Abstract

This note presents a theoretical analysis and numerical simulation of hydraulic transients in pressurized pipeline system made of a local polyethylene pipe-wall located at a steel pipeline system. The continuity and momentum equations are solved by the method of characteristic (MOC) taking into account the viscoelastic effect of the pipe-wall for polyethylene pipe. The polyethylene pipe length and location at the pipeline and the discharge flow rate are changed and their influence on transient flow is investigated. By comparing this pipeline system with one that is made of polyethylene pipe totally, the possibility of using local polyethylene pipe due to its effect on the pressure wave is investigated.
Hossein Askarizadeh, Hossein Ahmadikia,
Volume 13, Issue 13 (3-2014)
Abstract

In this study, classical and generalized dual phase lag bioheat transfer models are applied for investigate thermal damage to skin tissue exposed to the transient heat flux. The analytical bioheat transfer analysis with transient heat flux on skin tissue has only been studied by Pennes and thermal wave models. This paper, for the first time, provides the analytical solution of the dual phase lag model in skin tissue under transient surface heating using Laplace transform method and inversion theorem. Since the dual phase lag model under certain circumstances reduces to the Pennes and thermal wave models, comparisons of the temperature responses and thermal damages between the these three models are carried out. The influence of porosity factor and coupling factor between blood and tissue on the thermal damage of tissue is investigated and the results demonstrate that increases in these factors respectively leads to the higher and lower tissue thermal damage and the effects of these factors on the thermal damage in the depth of tissue is lower than near the surface.
Ehsan Ahmadi, Mohammad Forouzan, Manizheh Aghaei, Masoud Shirani,
Volume 14, Issue 6 (9-2014)
Abstract

Ductile iron pipes are widely used in modern drinking water and wastewater networks. They often produce by horizontal centrifugal casting process. In this reasearch, the finite element base package ANSYS software has been used for thermal simulation of horizontal centrifugal casting process of ductile iron pipes.The simulation includes obtaining temperature distribution of mold and cast during different temperature cycles. In the simulation, latent heat due to solidification, temperature-dependent thermo-physical properties of material, heat transfer coefficient in metal-mold interface due to mold coating and air gap and thermal boundary conditions proportional to practical conditions, are considered. In this paper, pouring process to get transient thermal distribution in main body of mold and cast are also simulated. The results of the thermal simulation show good agreement with the experimental results conducted in this study and literature. The results can be used as input data for the numerical model to estimate thermal fatigue life of a permanent mold. The results of simulation have shown that, the thermal resistance of the air gap and mold coating has a significant effect on the temperature distribution in the pipe and the mold. Pouring process causes temperature gradients in the axial direction in the mold and the cast.
Yossef Hojjat, Keyvan Kakavand, Mojtaba Ghodsi, Ali Asghar Maddah,
Volume 14, Issue 12 (3-2015)
Abstract

In this paper a new model is developed to describe the response of Magneto-rheological fluids (MRF) in transient state. The models which are developed so far, cover the steady-state flow, or address the transient state, with step-wise input electrical current and constant shear rate. In this paper, a new model for transient state of MRF is developed in which the input electrical current is an exponential function in different values of shear rate. Due to the magnetic inertia caused by the inductance of the coil, the real magnetic flux density could not be step-wise. Hence, compare with the other models, this model is in well agreement with reality. To verify the presented model and study the fluid properties as input parameters, an experimental coupling is designed and fabricated. The coupling applies magnetic field perpendicular to shear direction, and measures the shear stress as a function of time. The results of the proposed model show acceptable agreement with experimental observations. According to experimental and theoretical results, the presented model is applied to a controllable torque coupling and acceptable results were obtained.
Hadi Kargar Sharifabad, Morteza Mirzaei Amirabad,
Volume 15, Issue 5 (7-2015)
Abstract

Awareness of the thermal conductivity of nanofluids regard to a significant development for use in research,it is necessary with regard to the inability of the analytical and experimental models that presented in most cases, it experimentally thermal conductivity can be measured. In this paper, the design and performance of thermal conductivity of fluids and nanofluidics measurement device without using a Wheatstone bridge is tested. Wheatstone bridge short transient hot wire method has previously been used for construction that requiring complex electronic systems and high power consumption. In this paper, a new method is provided so that no current or voltage is kept constant, but the method of measuring the relative resistance of the copper-clad lacquered with a diameter of 40 microns was used probe is easy to is within reach. The difference between the results of the design references, 1.17% is obtained. In this regard, changes in the magnetic fluid thermal conductivity is studied experimentally. Magnetic fluids are a new class of nanofluids are affected by magnetic fields and their properties can be changed. Fe3O4 magnetic water-based tests for different volume percentages.

Volume 15, Issue 5 (9-2015)
Abstract

For retrofitting structures against blast loads, sufficient ductility and strength should be provided by Using high-performance materials such as fiber reinforced polymer (FRP) composites. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. The structural behavior of reinforced concrete (RC) slab retrofitted with fiber reinforced polymer (FRP) under blast pressure is simulated using nonlinear transient analysis of Ls-Dyna software. And the analysis results are verified with the previous experimental results. It was determined that overall the FRP retrofitted panels performed better than the companion control panels. Parametric studies are performed to examine the influence of FRP thickness, FRP strength, Compressive strength of concrete, ratio of steel bars on the response of retrofitted panel. Improvement on slab blast load resistance capacity is achieved by increasing all of parameters. But effect of increasing Compressive strength of concrete is more than another, In other words, increasing Compressive strength of concrete is economical. The relative effectiveness of CFRP and GFRP in strengthening deficient slabs can be evaluated by comparing the behavior of specimens. The two slabs in each set of specimens are similar in every aspect except that one slab was retrofitted by CFRP whereas the other one was confined by GFRP. The layers of the GFRP were as those of the CFRP. Comparisons of the ductility parameters show that both slabs in each set behaved in a similar manner and had comparable ductility parameters, the ultimate tensile strength of the CFRP fabric was higher than that of the GFRP fabric. The effectiveness of CFRP measured was larger than that of GFRP. From these test results, it appears that the effectiveness of FRP in enhancing slab ductility closely relates to its ultimate tensile strength..For retrofitting structures against blast loads, sufficient ductility and strength should be provided by Using high-performance materials such as fiber reinforced polymer (FRP) composites. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads.The structural behavior of reinforced concrete (RC) slab retrofitted with fiber reinforced polymer (FRP) under blast pressure is simulated using nonlinear transient analysis of Ls-Dyna software. And the analysis results are verified with the previous experimental results. It was determined that overall the FRP retrofitted panels performed better than the companion control panels. Parametric studies are performed to examine the influence of FRP thickness, FRP strength, Compressive strength of concrete, ratio of steel bars on the response of retrofitted panel. Improvement on slab blast load resistance capacity is achieved by increasing all of parameters. But effect of increasing Compressive strength of concrete is more than another, In other words, increasing Compressive strength of concrete is economical. The relative effectiveness of CFRP and GFRP in strengthening deficient slabs can be evaluated by comparing the behavior of specimens.
Mohsen Nazari, Nasibe Babazadeh, Mohammad Mohsen Shahmardan, Mojtaba Ashouri,
Volume 15, Issue 6 (8-2015)
Abstract

Transient heat transfer from a storage fluid around a central tube is experimentally investigated in a wide range of Reynolds number, i.e. 700
Ehsan Heidari, Alireza Shateri Najaf Abadi,
Volume 15, Issue 9 (11-2015)
Abstract

In this study, the numerical investigation of transient natural convection with respect to the effects of two-way fluid-structure interaction, is presented in a square enclosure containing a flexible baffle. The enclosure is filled with air of Prandtl number 0.71. Temperature is constant in both hot and cold vertical walls, while baffle and horizontal walls are adiabatic. Arbitrary Lagrangian-Eulerian (ALE) formulation is used to describe the fluid motion in the given model. Non-Dimensional fluid domain equations with relevant boundary conditions are discretized by the finite volume method (FVM), and PISO algorithm is used to solve the pressure-velocity coupling. Non-Dimensional equations of the baffle motion are solved by the finite element method (FEM) and Newton-Raphson iteration technique. Rayleigh number changes over the range of 10^3 to 10^6. Among the assessed cases in this study, 25 and 35 percentages of them indicate respectively, increase and decrease in the rate of heat transfer in compare with the enclosure containing a rigid baffle. Maximum and minimum values of Num,ss variation are respectively, 4.5 and -15.4 percent. In compare with the rigid baffle, about 90 percent of assessed cases indicate an increase in the time to reach the steady state situations, that it is not considered favorable.
Mousa Rezaee, Reza Fathi,
Volume 15, Issue 10 (1-2016)
Abstract

The unbalancing is a destructive phenomenon and is a major cause of undesired vibrations in rotating machinery. One of the new methods used to reduce the imbalance is the implementing of automatic dynamic ball balancer. In previous studies the dynamic behavior of automatic ball balancer has been investigated. These studies indicate numerous advantages of automatic ball balancer. However, the traditional automatic ball balancer has two major deficiencies: First, the rotor vibration amplitude is larger than that of a rotor without an automatic ball balancer in speeds below the first critical speed and, the second deficiency is that it has a limited stable region of the perfect balancing configuration. In this paper, a new design of a three-ball automatic balancer is introduced. The governing equations of motion are derived using the Lagrange's equations, and the balanced stable region is obtained. It is shown that this type of automatic ball balancer can prevent from increasing the vibrations of the rotor at the speed range below the first critical speed. Moreover, the new type of balancer increases the balance stable region of the system. Reducing the vibration amplitude in the mentioned range causes the life time of the system to be increased. Moreover, increasing the balanced stable range makes the new design of balancer can balance the systems with a wider range of parameters.
Milad Moradi, Ali Chaibakhsh, Amin Ramezani,
Volume 16, Issue 10 (1-2017)
Abstract

In this study, an application of support vector machine (SVM) for early fault detection in increasing the level of the start-up vessel in a Benson type once-through boiler during load changes is presented. The level increasing in the start-up vessel is happened due to thermal conditions disruption inside the boiler especially while the unit load is ramped-down. In this regard, first, the variables effective on increasing the level of start-up vessel was identified based on experimental data from a power plant unit, then the dimension of input variables was reduced by selecting appropriate features. Experimental results show that the hotwell surfaces’ temperature could be considered as the most appropriate indicator for steam quality deterioration. By comparing the extracted features from healthy and unhealthy conditions, appropriate fault model was developed using SVM with radial basis function (RBF) as the kernel. The performances of fault detection system were evaluated with respect to the similar faults at two different time periods happen in a steam power plant. The obtained results show the accuracy and feasibility of the proposed approach in early detection of faults during the unit’s load variations. Advantages of the proposed technique is preventing false alarm in power plants’ boilers as load changes.
Amir Reza Ahahani, Hamid Sharifi Torki,
Volume 16, Issue 10 (1-2017)
Abstract

The thermoelasticity problem in a thick-walled isotropic and homogeneous cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are prescribed on the inner and the outer surfaces of the hollow cylinder. For the thermal boundary conditions, the temperature itself is prescribed on the boundaries. For the mechanical boundary conditions, the tractions are prescribed on both the inner and the outer surfaces of the hollow cylinder. Obtaining the distribution of the temperature throughout the cylinder, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial stress and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface and the temperature of the outer surface is considered to be zero, where the mechanical tractions on the inner and the outer surfaces of the hollow cylinder are assumed to be zero. On solving the dynamical thermoelasticity problem, a thermal shock was observed after plotting the results. Using the obtained plots, instants of reaching dilatation wave to specific radial positions are computed and compared with those from the classical formula.
Mousa Rezaee, Mir Mohammad Ettefagh, Reza Fathi,
Volume 16, Issue 11 (1-2017)
Abstract

One of the new methods for reducing the vibrations of rotors with variable imbalance is implementing automatic ball balancer (ABB). Although, the ABB has numerous advantages, it has one major deficiency; increasing the rotor vibration amplitude at transient state that limits the use of this type of balancers. In the previous studies for diminishing the mentioned deficiency, a new type of ball balancer which is called the ball-spring ABB, is introduced and the dynamic behavior of Jeffcott rotor equipped with the ball-spring ABB is investigated. In the Jeffcott rotor model the gyroscopic effect is not considered, however, in practice and in many applications, due to asymmetry which comes from the offset of the rotor from the shaft mid-span, the gyroscopic effect is generated. In such conditions, the results of Jeffcott model are not reliable and dynamic behavior of the ball-spring ABB should be investigated in the presence of gyroscopic effect. In this paper by considering the asymmetry in the rotor-shaft system and taking into account the gyroscopic effect, the equations of motion of a rotor equipped with the ball-spring ABB are derived. The time responses of the system are computed and based on the Lyapanov first method, the stable regions are extracted. The results show that not only the gyroscopic effect does not affect on the performance of the ball-spring ABB, but also the magnitude of the Eulerian angles of the rotor equipped with the ball-spring ABB is less those the rotor equipped with the traditional one.
Hamed Karimian Aliabadi, Ahmad Ahmadi, Alireza Keramat,
Volume 16, Issue 11 (1-2017)
Abstract

In this research the transient flow analysis in viscoelastic pipes considering Fluid Structure Interaction have been performed utilizing a newly developed formulation of Transfer Matrix Method in frequency domain. To obtain this extended form of TMM, mathematical processes was accomplished. Time domain governing equations have been transformed to frequency domain and then a suitable matrix form of them is used to study transient flow due to sudden valve closure. Obtaining a set of algebraic equations instead of integral equations and the ability to analyze this phenomenon without need to solve complex convolution integral, are some of the benefits of the frequency domain tools, which have been applied in this research. To verify the model, initially two cases of rigid and elastic pipe wall have been analyzed. Results showed good conformity comparing to experimental data and analytical solution available. Then having a set of reliable experimental data of transient flow in VE pipe, MatLab code was adopted to the model and fortunately here also results were in good compatibility with the experimental results. Also it has been showed that this model will be a suitable tool for parametric analysis and for determining the critical situations of the system. The results obtained from this research prove that using frequency domain tools will lead to an effective and precise model for simulating the transient flow characteristics in VE and also normal transmitting pipelines.
Javad Khodaei-Mehr, Amin Khakpour Komar Sofla, Omid Ahmadi Khiyavi, Mohammad Ali Hamed, Sima Baheri Islami,
Volume 17, Issue 1 (3-2017)
Abstract

In the present work, the transient behavior of a single spool turbojet engine as a function of fuel flow rate is investigated, using fourth order nonlinear dynamic model based on the airplane longitudinal dynamics, compressor and turbine dynamics and dynamics of rotor. Taking into account the thermodynamic variables in all five components of the engine and representing desired parameters as function of time are contributions of the paper. Moreover, we use inter-component volume method in our study which results in more accurate simulations. In this method, by adding the pressure and temperature fluctuations, caused by saved mass, a more precise model is obtained. Taking advantage of this method and using the governing thermodynamic and Gas dynamic equations, the governing dynamic equations of engine are obtained. By solving the equations in MATLAB software, the influence of the fuel flow rate on the output variables is studied. It should be mentioned that fly considered horizontal and in specific height of 2500 (m) at all of the simulation period. Engine thrust is specifically considered as the desired modeling parameter. In addition, the variation in airplane velocity, as an important parameter in the internal fuel flow rate, is added to the simulations, resulting in more accuracy. Studying the dynamic behavior of the engine thrust is a pre-requisite to the design of appropriate controllers that is the next step of this research.
Iman Bahman Jahromi, Kaveh Ghorbanian, Mohammad Ebrahimi,
Volume 17, Issue 2 (3-2017)
Abstract

The far-field acoustic signature of this transient impinging jet is experimentally investigated in this study. Feedback loop mechanism which is an acoustic resonance mode generated by the reflection of jet shear layer noise from the impinging plate and affecting jet mixing shear layer, is also investigated. The stagnation temperature of jet is increased by means of a reflected type shock tube up to 950 (K). A convergent-divergent nozzle generates jet with Mach number of 1.4. The far-field mixing layer noise of this quasi-steady free jet is compared by the results of steady state generated ones. The acoustic signal of this transient jet is investigated when impinges to a normal plate. It is seen that every specific phenomenon has its most powerful acoustic signature at a distinct angle relative to the impingement point. The time-frequency investigations by the means of wavelet transform and related scalograms reveal that the sound wave generated by feedback loop mechanism is tonal and continuous in time compared to the acoustic signals of the jet shear layer that are seen as the intermittent acoustic events in the far-field acoustic scalograms.
Ali Khorram, Akbar Davodi Jamaloei, Abed Jafari, Mahmoud Moradi,
Volume 17, Issue 6 (8-2017)
Abstract

In this paper, transient liquid phase (TLP) bonding process between Inconel 718 alloy and Inconel 600 alloy using a BNi-2 interlayer with 50 μm thickness was investigated. Transient liquid phase bonding process was performed at 1050 °C for 5, 25 and 45 min. Microstructure evaluation was carried out through optical microscopy, field emission scanning electron microscopy (FE-SEM). Also, bonding shear strength was measured. The results showed that the joint microstructure was formed of three zones including isothermal solidification zone (ISZ), thermal solidification zone (ASZ) and diffusion affected zone (DAZ). At the time of 5 min, boride intermetallic compounds in thermal solidification zone were formed. Isothermal solidification was completed and thermal solidification zone was vanished by increasing the bonding time from 5 to 45 min. Diffusion affected zone of the Inconel 718 alloy was persistent and expanded by increasing the time and diffusion of B element to parent metals, but this region in Inconel 600 alloy was vanished and the homogenization process was occurred by increasing the bonding time. Also, because of remove of boride intermetallic compounds, changes of hardness in joint region were more smoothly and the hardness value of joint region was about 280 HV. The results of shear strength showed that the bonding strength was increased from 250 MPa to 410 MPa with increasing the bonding time from 5 to 45 min, respectively.
Simindokht Saemi, Mehrdad Raisee, Michel Cervantes, Ahmad Nourbakhsh,
Volume 17, Issue 8 (10-2017)
Abstract

The pressure-time method is a flow rate measurement technique generally employed in hydropower plants to evaluate the efficiency of hydraulic turbines. The 1D numerical simulation incorporating the finite volume method is employed to evaluate the method. The results are compared with the experimental data. The flow is simulated inside a straight pipe with Reynolds number Re=6.76×〖10〗^6. The flow rate reduction curve is employed for the simulation of the deceleration part of the flow, before valve closure, in the pressure-time method. The effective parameters on the flow rate calculation including the friction losses and the definition of the final time of the valve closure are studied in detail. The increase in the accuracy of the flow rate calculation is a function of the increase in the accuracy of the friction loss calculations. The effect of several friction factors proposed for the evaluation of the unsteady flow is studied on the accuracy of the flow rate calculation. The Pezzinga friction factor shows the least error in the flow rate calculation. The available methods to find out the final time of integration still show a large error. A new method is proposed for the flow rate estimation without any need to have the exact time of the valve closure with an acceptable accuracy.

Page 1 from 2    
First
Previous
1