Search published articles


Showing 6 results for Ultrafine

Hesam Torabzadeh Kashi, Ghader Faraji,
Volume 15, Issue 8 (10-2015)
Abstract

In this research, a novel severe plastic deformation (SPD) method entitled cyclic flaring and sinking (CFS) is presented for producing of the ultrafine-grained (UFG) thin-walled cylindrical tubes. Finite element (FE) results showed that CFS process has a good strain homogeneity and requiring a low load. CFS process includes two different flaring and sinking half-cycles. At flaring half cycle, the flaring punch with two stepped regions is pressed into the tube. Shear and normal tensile strains are applied as a result of the existence of shear zones and increase in the tube diameter. In the second half cycle, the tube is then pressed to sinking die that applies same shear strains and normal compression strain so that the initial diameter of the tube is achieved and high plastic strain is applied. This process can be run periodically on the tube to exert more strain and consequently finer grain size and ultimately achieve better mechanical properties. The results indicated that the yield and ultimate strengths of the CFS processed Al (1050) tube were significantly increased to 165 MPa, and 173 MPa, respectively from the initial values of 50 MPa, and 115 MPa. The elongation to failure was decreased to about 14% after three cycles from the initial value of 42%. In addition, the hardness increases to ~38 Hv after ten cycles of CFS from ~23 Hv. Keywords
Hessam Torabzadeh, Ghader Faraji,
Volume 16, Issue 6 (8-2016)
Abstract

In this article, it is tried to be mentioned the functional structure of production methods of ultrafine-grained (UFG) and nanograined tubes. As well as metallurgical and mechanical effects of these methods on the matter are fully investigated. Ultrafine grained materials contain grains with an average size of 100-1000 nm and if the grain size is less than 100 nm, the material is classified as nanograined material which have a lot of applications in different industries such as aerospace, automobile, military and medical. Generally, the methods presented in this paper has been done on common materials like aluminum and pure copper and magnesium alloy AZ91. Extremely large plastic deformations lead to ultrafine-grain or nearly nanomaterial in the severe plastic deformation (SPD) methods. Most severe plastic deformation methods for producing ultra-fine grain bulk, whereas in the past decade due to the increasing need tube components with high strength and good ductility, The research was conducted to produce UFG tubes. Advances in this field presented formally so that the advantages and disadvantages of each process are clearly comparable. The most important advantage of ultrafine-grain materials is an enhanced mechanical strength in comparison with their coarse grain counterparts. The microstructural reasons are discussed. Furthermore, this article reviews the refinement and deformation mechanisms, e.g. dislocation deformation mechanism, twin deformation mechanism, grain boundary sliding etc. of SPD methods.
Behzad Binesh, Mehrdad Aghaie-Khafri, Mohammad Daneshi,
Volume 17, Issue 8 (10-2017)
Abstract

In this study, severe plastic deformation of 7075 aluminum alloy was investigated using a new method, based on the combination of conventional upsetting and direct extrusion. In this process, which is called repetitive upsetting-extrusion, cylindrical samples were first subjected to upsetting and were subsequently subjected to extrusion at 250 °C with various processing cycles. Die design was carried out considering the possibility of conducting both upsetting and extrusion by using a single die and the maximum of four RUE cycles were successfully performed on the samples. Finite element method was used to simulate the deformation behavior of 7075 alloy during repetitive upsetting-extrusion processing and the strain distribution was obtained for the deformed samples. The finite element simulation results correlated fairly well with the microstructural observations. Based on the simulation results, the maximum effective strain was observed at the central region of the samples. The deformation behavior and the flow pattern were discussed based on the experimental and the simulation results. In addition, the effect of applied strain on mechanical properties of processed samples was studied. Tensile strength and elongation of deformed samples increased with extending the number of repetitive upsetting-extrusion cycles.
M. Honarpisheh , M.h. Tavajjohi , F. Nazari,
Volume 19, Issue 2 (2-2019)
Abstract

The Constrained Groove Pressing (CGP) process is one of the most effective and newest methods of the severe plastic deformation for production ultrafine-grain metal sheets. In this research, the effect of CGP on the microstructure and mechanical properties of pure copper sheets was investigated. In order to study the microstructure of the samples, the optical microscopy was used, and tensile and Vickers micro-hardness tests were utilized for the evaluation of the mechanical properties. Investigating the microstructure of CGPed sheets determined that the CGP process has caused intense grain refinement, especially at first pass. Also, the results of mechanical properties showed that this process has considerably increased strength and hardness of the copper samples. In the numerical investigation of constrained groove pressing, effective strain and forming force were evaluated, using finite element simulation and the results indicated that with increasing number of CGP passes, effective strain, and forming force increase. Also, distribution of effective strain illustrated that the center of samples are under more effective strain that causes increasing hardness inside the samples be more than increasing hardness of the surface. Finally, a method was presented for estimating the yield strength of material, using the hardness values, and it could calculate the yield stress in different passes of process with an acceptable error of 6%.

S.a. Hosseini-Moradi , B. Binesh, M.r. Yazdanpanah ‎,
Volume 19, Issue 11 (11-2019)
Abstract

In this research, semi-constrained groove pressing (SCGP) as one of the severe plastic deformation techniques was investigated to achieve an ultrafine-grained structure in interstitial free steel sheets. The maximum of four semi-constrained groove pressing passes was successfully applied on the samples and the effects of the number of SCGP passes on the microstructure and mechanical properties of the samples were investigated. The microstructural investigations of the deformed specimens indicate that the semi-constrained groove pressing can effectively reduce the grain/crystallite size so that it ranges from about 41 μm in annealed condition to 232 nm after four passes. The results also showed that the strength and hardness of the samples are increased significantly by applying the pressing process. The highest tensile and yield strengths were observed in the two-pass SCGP processed sample, which showed an increase of about 90% and 75%, respectively, compared to the initial sample. The maximum hardness value of 165 Vickers was obtained for a three-pass SCGP processed sample, which is about 68% higher than the annealed sample. Regarding the hardness tests results, the uniformity of deformation increased with increasing the number of SCGP passes. Finite element method was used to simulate the semi-constrained groove pressing, and the strain distribution was obtained for the deformed samples. The finite element simulation results correlated fairly well with the analytical results.

A. Siahsarani , Gh. Faraji, F. Samadpour,
Volume 20, Issue 4 (4-2020)
Abstract

Magnesium and its alloys have received much attention not only in the aerospace and electronics industry, but also in medical applications due to its low density, excellent physical properties, and biocompatibility. However, magnesium and its alloys have low ductility and poor strain hardening ability because of the hexagonal crystal structure with the limited number of slip systems at room temperature. Therefore, it seems necessary to improve their ductility and other mechanical properties via novel technologies. In this research, hydrostatic cyclic expansion extrusion has been used to produce ultrafine-grained magnesium rod. Properties of produced rods have been investigated morphologically and mechanically. The numerical investigation has also been performed to show the effects of hydrostatic pressure on strain distribution. Due to the brittleness of magnesium, the process has been conducted at elevated temperatures. Also, due to the fluid limitation at high temperatures, melted polyethylene has been used as the fluid in the process. The results showed that the yield and ultimate strength increased by 54% and 43% after only one pass of the hydrostatic cyclic expansion extrusion process, respectively. Also, elongation increased by 46%. Furthermore, microhardness has also increased with an average of 57 Hv to 70 Hv. The microstructure result showed that the grains become ultrafine-grained after only one pass of the process. Finite element investigation revealed that high hydrostatic pressure has a good effect on improving the strain distribution and the microstructure. This process seems very appropriate for industrial applications due to its ability to produce long ultrafine-grained rods.



Page 1 from 1