Search published articles


Showing 1 results for Unconventional Obstacle

A. Sharafi, D. Mokhtari,
Volume 20, Issue 5 (5-2020)
Abstract

In this research, the effect of several unconventional obstructions with cubic, spherical, cylindrical, and cone geometries on the propulsion vector of a convergent-divergent micro nozzle as a new method in propulsion vector control is experimentally investigated. For this purpose, a convergent-divergent nozzle was designed and constructed in small dimensions. This nozzle is such that the Mach number is its nominal output in full expansion conditions 2. The wall of this nozzle is designed to measure pressure variations with pressure holes. Also, in the nozzle wall, a duct has been created to apply a bulge inside the nozzle. Pressure sensors and the shadograph system have been used to pressure measurement and check the outlet flow field respectively. The total pressure of the calming chamber is constant in all experiments and is equal to 5.5 times. The results of this study show that the maximum deviation is related to an obstruction with a cubic geometry which is 2.1 degrees. Also, the geometries that have sharp corners are more shock-shaped and hit the opposite wall. In this research, the shock formed by a cubic barrier has hit the opposite wall, but with a spherical shaped and cone-shaped barrier, the shock comes out from the nozzle. Also, these results indicate that the axial force of the nozzle has been reduced to a very small extent.


Page 1 from 1