Search published articles
Showing 2 results for Unstructured Uncertainty
Hemad Keshavarzpour, Seyyed Mohammad Hasheminejad,
Volume 15, Issue 4 (6-2015)
Abstract
Active structural acoustic radiation control of a piezolaminated arbitrary thick rectangular plate with a mixed-norm H_2/H_∞ robust controller is developed. The structure is made of a transversely isotropic host layer with a distributed piezoelectric sensor layer as well as a matched piezoelectric actuator layer, facing high frequency uncertainties and random external disturbances. The elasto-acoustic formulation, based on the exact linear 3D piezo-elasticity theory, is developed for problem of fully coupled structure and acoustic mediums. Identification of the fluid/structure interaction system with subspace algorithm is implemented on actuator/sensor data sets. A multi-objective controller with regional pole placement, formulated in LMI framework, is synthesized while unmodeled dynamics are treated as multiplicative uncertainties. Numerical simulations confirm effectiveness of the implemented multi-objective robust active control scheme for reduction of radiated acoustic power from a piezocomposite plate, without stimulating any instability. Also, better tracking performance and disturbance rejection of mixed-norm controller is observed in comparison to that of H_2 and H_∞ controllers. Finally, validity of the elasto-acoustic model is proved by results obtained from a finite element software, as well as with the data available in the literature.
S.f. Alem, E. Sabooni, F. Sheikholeslam, I. Izadi,
Volume 20, Issue 6 (6-2020)
Abstract
Piezoelectric actuators are the most common choice for position control with ultra-high precision. Despite the significant advantages, the linear and nonlinear dynamics of these actuators, such as hysteresis, could decrease the precision of the control system. In this research, a controller based on the sliding mode method is proposed for position control of piezoelectric actuator. Sliding mode control is a model-based and useful method in nanopositioning systems. In this research, Bouc-Wen model is used for description of the actuator’s behavior. In this model, the linear dynamic is modeled with mass, stiffness and damping terms, and the hysteresis is modeled by its nonlinear dynamics. Usually, there are mismatch and uncertainty between the physical system and mathematical model. For stability analysis of the prevalent sliding mode control, the upper bound of uncertainty must be known. But, in practical systems, this is not possible, simply. On the other hand, selecting the large values for this bound, increases the controller gain and distances it from the optimum value. The proposed adaptive robust control eliminates the dependency to the upper bound of uncertainty. This is done by introducing an online adaptive law for estimating this bound. Proposing this law, asymptotic stability of the closed-loop control system is proven. Implementing the presented method on the laboratory setup and simulator software, its effectiveness is shown by simulation and experimental results.