Search published articles


Showing 2 results for Vortex Flowmeter

H. Farahzadi, S.h. Hashemabadi, M. Shirvani,
Volume 20, Issue 9 (9-2020)
Abstract

Using vortex flowmeter is affordable, in addition, simple installation, high reliability, and high accuracy are some advantages of the vortex flowmeter. Vortex flowmeter works based on the vortex shedding principle, hence, the presence of particles in gas-solid flows may results in modulation in the turbulence intensity of the carrier phase and manipulate vortex shedding generated by a bluff body. In this study, the performance of the vortex flowmeter in the presence of particles with different sizes, density, solid volume fraction, and solid mass loading was studied with CFD simulation. The results indicated that the volume fraction and particles diameter are two significant parameters that affect vortex frequency. The vortex frequency is proportional to the velocity of gas flow and volume flow rate is calculated by Q= VA where V is average velocity in a pipe section with the area of A. Notwithstanding the neutral effect of microparticles on vortex frequency, moderate particles lessen the vortex frequency approximately by 20%. To coincide with the increase of solid volume fraction, the vortex frequency will descend, and in the high level of solid volume fraction, the vortex pattern goes to reach the instability. Since the size and volume fraction of the particles affects the frequency and consequently velocity, the gas flow rate measured by the vortex flowmeter is influenced by the presence of the particles. The numerical results have been validated with experimental data. The maximum relative error between the numerical simulation and the corresponding experimental data is 0.46% and 6.72 % for single-phase and gas-solid two-phase flows, respectively.

Ehsan Ardekani, Mohammad Ali Ardekani, Foad Farhani,
Volume 25, Issue 1 (12-2024)
Abstract

One of the methods to improve the performance of the vortex flowmeter, especially for low flowrate, is to use a dual bluff model that increases the vortex shedding frequency. In this experimental research work, the vortex shedding from a dual cylindrical bluff model of semicircular cross-section, at different l d  ratios, where d  is the diameter and l  is the distance between the two semicircular cylinders in series is measured and investigated using a wind tunnel and hot-wire anemometer. Results show that the Strouhal number for dual bluff body depends on the Reynolds number and l d . In the range of 0/8 l d <2 , the Strouhal number has changes and jumps compared to the Reynolds number. Therefore, it is not suitable for vortex flowmeter application. also show that the velocity frequency spectrum, it can be determined that the highest value of the turbulent intensity is related to the oscillating velocity with the vortex shedding frequency, and therefore, to investigate the strength of vortex shedding frequency, the turbulent intensity was investigated, that the value of turbulent intensity depends on Reynolds number and l d . Considering the standard deviation of the repeatability of the Strouhal number reading and also the strength of the vortex shedding frequency (investigation of the turbulent intensity), for 0< l d <0/8  and 2 l d 3 , a dual cylindrical bluff model of semicircular cross-section, placed in series, is suitable for vortex flowmeter application

Page 1 from 1