Search published articles


Showing 3 results for Warm Deep Drawing

Abozar Barimani, Seyed Jamal Hosseinipour,
Volume 14, Issue 10 (1-2015)
Abstract

Aluminum alloys are using widely duo to high strength-to-density ratio in the industries of automotive, shipbuilding and aerospace as a substitution of steel sheets. .To increases the formability of aluminum alloys in deep drawing process and due to formability problems of these alloys in room temperature using of warm deep drawing process is necessary. According to recent researches, warm deep drawing in gradient condition has better results as isothermal case. In this paper the process parameters in production of cylindrical parts from aluminum alloys 5083 sheet with 2mm thickness is investigated. For this purpose, gradient warm deep drawing in temperatures of ambient (25˚C), 80˚C, 150˚C, 180˚C, 250˚C, 350˚C , 450˚C and 550˚C have been used. The blank in flange region is heated by die heating and the blank center to increases the strength of the region which contact with punch corner radius is cooled by water circulating punch. The results show that increasing the temperature of the blank in flange region and also cooling of blank center lead to improve the limit drawing ratio. In forming temperature of 550˚C and ram speed of 378 mm/min and lubrication by graphite powder can reach to the limit drawing ratio equal to 2.83.
Seyed Mohammad Ebrahim Alinaghi-Maddah, Seyed Jamal Hosseinipour, Mohammad Bakhshi-Jooybari,
Volume 18, Issue 8 (12-2018)
Abstract

Aluminum alloys have become widespread in the various industries due to the characteristic of high strength-to-density ratio. These alloys do not have a suitable formability at ambient temperature so they formed at high temperatures. The main hot forming methods used for aluminum alloys include deep drawing and gas forming. Both of these methods have their own advantages and disadvantages. In this study, a combined process involving deep drawing and gas forming has been used. In this process, the first step is to create a pre-formed deep drawing and in the second stage, the final piece is produced by gas forming process. The purpose of this study is to optimize the levels of the main process parameters for the shaping of cubic parts of aluminum sheet 5083 sheet. These parameters include the temperature and blank-holder force of deep drawing stage and the temperature and gas pressure at the gas forming stage. The best levels of process parameters were selected using the Taguchi experimental design method. The results show that the temperature at 350 ° C and the blank-holder force of 1000 N for deep drawing, as well as the temperature of 485 ° C and the gas pressure of 0.6 MPa for the gas forming stage, can be achieved with the least degree of thinning in the specimen. The maximum thinning achieved is 22%.
A. Sanatiean, A. Saghafi, H. Rastegari Koupaei,
Volume 20, Issue 6 (6-2020)
Abstract

Deep drawing process is one of the most important processes of sheet forming, which is widely used in the deformation of metal sheets in order to produce parts with complex geometry. Several studies have been carried out on some steels with good formability such as low-carbon and austenitic stainless steels. Among different types of plain carbon steels, high carbon eutectiod steels are capable to withstand cold and warm working without formation of any defect, due to their fully pearlitic microstructure without the presence of proeutectoid phases and nano-sized cementite lamella. However, no comprehensive research has been conducted on the deep drawing process of eutectoid steel. In the present research, the formability of CK75 steel sheets was experimentally evaluated using warm deep drawing process. Warm deep drawing process of the CK75 steel was studied in the temperature range near and below the eutectoid transformation temperature. The results show that deformation at 700°C (near to the eutectoid temperature) lead to the uniform distribution of thickness and less instability. On the other hand, maximum instability (e.g. thinning) was obtained by warm deformation at 550°C. At the temperature above the eutectoid transformation temperature, due to the formation of multi-phase structure and non-uniform distribution of cementite particle, the workability was reduced and led to the occurrence of rupture during deep drawing.


Page 1 from 1