Showing 11 results for Baffle
Volume 12, Issue 2 (6-2012)
Abstract
Nowadays, fluid storage tanks are as important as fluids in urban life. The dynamic behavior of this important structure is different from common structures. Baffles as a passive control device can reduce the effects of sloshing which reduces the structural response to seismic excitation. In this study, the effect of baffles on seismic response of cylindrical vertical liquid storage tanks is investigated. The considered baffle is an annular plate with constant level from the base and constant inner diameter fixed on wall of the tank. Considering Laplace equation as the governing equation of fluid domain, and using boundary element method, a rigid tank is analyzed in the frequency and time domains. Afterwards, the baffle effects on natural frequency (in the frequency domain), and on base shear and overturning moment (in the time domain) due to El Centro and Erzincan earthquakes are investigated. Based on the results of mentioned analyses, it is observed that when the baffle is installed, the natural frequency of liquid domain reduces. Moreover, by installing the baffle, the base shear slightly increases whereas overturning moment remarkably reduces.
Seyed Ali Atyabi, Ebrahim Afshari, Mahmood Adami,
Volume 14, Issue 4 (7-2014)
Abstract
In this study, we propose a configuration of partially blocked oxidant channel with baffle plates transversely inserted in the cathode channel and effects of the fluid dynamics due to the presence or non-presence of the baffles and their effect on the fuel cell performance is investigated. A 3D model with the presence of baffle plates is considered and a set of equations (continuity, momentum, species and charge together with electrochemical kinetics) in the form of single domain is developed and solved numerically. The baffles block the main flow in the cathode channel and force more reactant gases to turn to the GDL. This fact implies an enhancement of the oxygen flux at the GDL and catalyst surface, especially at the position beneath the location of the baffle plates. An increase in the number of baffles contribute to the reactant gas transport to GDL with more uniform distribution of gas in the GDL and catalyst layer, specially in high current densities, where it leads to a penalty of high pressure – loss. The predictions indicate that the local transport of the reactant gas would enhance the local current densities and the fuel cell performance in presence of baffle in the channel.
Volume 14, Issue 5 (9-2014)
Abstract
Hydraulic jumps occur in natural systems like streams and rivers as well as manufactured systems. Samples of the latter occurance are jumps in water distribution and irrigation networks formed downstream of hydraulic structures such as spillways, sluice gates, and drops. These structures are usually designed for a specific tailwater depth. Stilling basins with baffle blocks are frequently used as energy dissipators downstream of hydraulic structures. Baffle blocks are often used to stabilize the jump, decrease its length and increase the energy dissipation. If the flow rates become more than the design discharge, the tail water depth will be greater than the one required for a free jump. These situations are common in low head hydraulic structures including low diversion dam spillways and gates. Under such conditions the hydraulic jump will be submerged. The performance of the blocks in submerged jump (SJ) condition differs from the free jump (FJ) case. According to some factors such as Froude number, block shape and location and submergence factor, flow regimes on baffle blocks in condition of submerged hydraulic jumps which occurs in stilling basins, are classified into two regimes, the deflected surface jet (DSJ) and reattaching wall jet (RWJ). In this article a numerical study was conducted to investigate flow pattern, vortexes and the magnitude of vorticity in submerged hydraulic jumps with baffle blocks downstream of a sluice gate. The results were compared to ones in same conditions without blocks. 3D RANS simulations have been applied by Fluent software. RSM turbulence model were used which illustrated much precise results in verification. Three numerical models have been created; Submerged wall jet without blocks, submerged hydraulic jumps with baffle blocks in the condition of deflected surface jet flow regime and submerged hydraulic jumps with baffle blocks in the condition of reattaching wall jet flow regime. Flow pattern has been exhibited for each model and results were compared with each other. Vortexes formed in such situations classified into three groups according to axis which they whirl around. It was observed that deflected surface jet regime has more vortexes in comparison to the two other conditions. In addition, by measuring the average magnitude of vorticity in cross-sections it has been concluded that z-vortexes –vortexes which rotate around z axis– much more powerful than x- and y-vortexes as they determine the kind of flow regime. Furthermore, this magnitude is about two times larger in deflected surface regime than two other situations. This fact leads to more turbulence in the flow that makes deflected surface jet regime the desirable condition in which baffle blocks perform more efficiently as energy dissipators in comparison to two other investigated models. In order that, from energy vantage point, conditions should be provided in a way to form submerged hydraulic jump as deflected surface jet regime.
Kiumars Mazaheri, Masoud Shafa, Ali Reza Alipoor,
Volume 15, Issue 2 (4-2015)
Abstract
Industrial kilns and power plants with high consumption of fossil fuels play a significant role in the production of air pollutants. Nitrogen oxide is one of these pollutants. In the present work, effect of different geometries on NO reduction in stack of industrial kilns and power plants is investigated numerically based on a selective non catalytic reduction (SNCR) method. In SNCR method, the NO reacts with ammonia which is injected into the kiln stack at temperature range of about 1150-1350 K and nitrogen is formed. In this study, a cylindrical stack with 500 cm length and 5 cm diameter is chosen similar to Ostberg experimental work. Four geometries for ammonia injection with one, two, four nozzles and by a ring around the stack have been studied. Numerical simulation of NO reduction by SNCR method shows that injection with one nozzle has lower efficiency than other injection geometries. Also effect of gas stack length on NO reduction has been investigated. The results show that increasing of stack length, has significant effect on ammonia slip reduction phenomenon. To investigate effect of ammonia injection nozzle angle on SNCR efficiency, nozzle angles between -75 to 75 degree were analyzed. Results show that the efficiency of this phenomenon decreases by increasing absolute value of injection nozzle angle. Finally, effect of baffle presence in mainstream has been studied. It is observed that and the required time and length for reaction decrease due to better mixing.
Mohammad Mardani, Hasan Rahimzadeh, Hamed Sarkardeh,
Volume 15, Issue 6 (8-2015)
Abstract
One of the most frequently encountered cases of rapid varied flow is the hydraulic jump. Stilling basins are used to dissipate the excess kinetic energy of flow to ensure the safety of overflow spillway, chutes, sluices, pipe outlets etc. in this study the topic of block in stilling basins is investigation in a general approach and it’s effect on energy dissipation and downstream scouring are analyzed. In the present research, the energy dissipation and scouring phenomenon were studied in different hydraulic and geometric conditions. Moreover, the present paper was focused on the effect of presence of blocks as an effective parameter on energy dissipation on stilling basin performance. To analyze and assessment of formed hydraulic jump in the stilling basins, the experimental data of many recent researches were achieved and compared. It was concluded that presence of blocks has significant effect on energy dissipation from 1% to 34%. It is also shown that with increasing the Fr Number, the secondary depth increases and the using a rough bed causes reducing the secondary depth between 18% to 37% in comparison with smooth one. Moreover, installing a rough bed also reduced the length of hydraulic jump between 27% to 67%. Using block in the stilling basins, reduces the scouring depth from USBR standard recommendation. Finally, it was concluded that using blocks increased the efficiency of the stilling basin performance.
Ehsan Heidari, Alireza Shateri Najaf Abadi,
Volume 15, Issue 9 (11-2015)
Abstract
In this study, the numerical investigation of transient natural convection with respect to the effects of two-way fluid-structure interaction, is presented in a square enclosure containing a flexible baffle. The enclosure is filled with air of Prandtl number 0.71. Temperature is constant in both hot and cold vertical walls, while baffle and horizontal walls are adiabatic. Arbitrary Lagrangian-Eulerian (ALE) formulation is used to describe the fluid motion in the given model. Non-Dimensional fluid domain equations with relevant boundary conditions are discretized by the finite volume method (FVM), and PISO algorithm is used to solve the pressure-velocity coupling. Non-Dimensional equations of the baffle motion are solved by the finite element method (FEM) and Newton-Raphson iteration technique. Rayleigh number changes over the range of 10^3 to 10^6. Among the assessed cases in this study, 25 and 35 percentages of them indicate respectively, increase and decrease in the rate of heat transfer in compare with the enclosure containing a rigid baffle. Maximum and minimum values of Num,ss variation are respectively, 4.5 and -15.4 percent. In compare with the rigid baffle, about 90 percent of assessed cases indicate an increase in the time to reach the steady state situations, that it is not considered favorable.
Afrasiab Raisi,
Volume 15, Issue 11 (1-2016)
Abstract
In this study, the natural convection heat transfer is numerically examined in a square enclosure filled with a non-Newtonia power-law fluid. Two fixed temperature baffles are mounted on the left wall of the enclosure. The left wall of the enclosure and the baffles installed on it, are at a constant temperature of T_h and the right wall of the enclosure is at a constant temperature of T_c, while its horizontal walls are thermally insulated. The governing equations for the power-law fluid flow are solved with the numerical finite difference method based on the control volume formulation and SIMPLE algorithm. The study investigates the effects of relevant parameters such as the Rayleigh number (〖10〗^3≤Ra≤〖10〗^6), the power-law index (0.8≤n≤1.4), the baffles length (0≤B≤0.5) and the baffles distance from each other (0.1≤D≤0.8) on flow and temperature fields and the rate of heat transfer. The results show that an increase in Rayleigh number, particularly when n
Volume 17, Issue 5 (12-2017)
Abstract
Numerical Investigation of the number of baffles effect on the efficiency of primary sedimentation tank in true dimensions.
Settling tanks of wastewater treatment plants are the most important components so that about one-third of the cost of a wastewater treatment plant construction is concerned to these tanks. In addition, the regulations referred to design of settling tanks are not enough. According to these, the adverse factors in settling tanks is very important to design and improve their performance. These factors in primary sedimentation tanks are including circulation zones, the phenomenon of short circuiting and non-uniform flow. One of the most important ways to improve flow conditions and increase the efficiency of settling tanks, is modifying the geometry of the tank through the installation of baffles. In this investigation, the effect of baffle structures on the hydraulic efficiency of primary sedimentation tanks has been investigated by three-dimensional numerical modeling in Flow-3D software. In this study, the optimum number of baffles is studied to increase hydraulic efficiency. Settling tank in true size and simplified model primary settling tank treatment plant south of Tehran. The geometry Specifications of tank include of length tank (L) from the main inlet to the overflow output of 60 m, a width of tank (W) 12.9 m, water depth in normal mode (H) 3 m. the input flow rate to the tank 650 l/s. Model geometry using AutoCAD software and three-dimensional shape is drawn. In this study, from three mesh blocks to mesh geometry model is used. All three of these blocks in all directions are fully in touch with and the type of are linked blocks. Intended for three blocks, the size of the mesh is selected respectively, 5, 7 and 10 cm monotonically in each direction. In numerical modeling, the turbulence model used to solve turbulent flow and to solve pressure the GMRES method is used. In addition, the VOF technique to show the behavior of fluid on free surface flow and FAVOR technique have been used to simulate surfaces and geometric boundaries. Verification of numerical simulation results with former experimental data properly acknowledges the numerical results. It is already known the optimal location of the first baffle.
The results show that baffle causes the uniformity flow and increase removal efficiency of the primary sedimentation tanks. To determine the optimum number of baffles, the comparison results between no baffle tank and optimized cases with one, two and three baffle done. Using more baffles, in ideal conditions, causes suppression of the jet flow and more chances the suspended particles deposition. The addition of new baffles in suitable locations reduces the maximum velocity amount, the size of the circulation zones and kinetic energy and create uniform velocity vectors inside the settling zone. Volume circulation zones by using one, two and three baffles compared to non-baffle decreased 4.18, 4.44 and 4.56% of the total tank volume, respectively. Finally, the results of the FTC method for several cases indicated that using number of baffles lead to increasing the performance of the sedimentation tanks.
Volume 18, Issue 1 (5-2018)
Abstract
In this study, a baffled photocatalytic reactor was used to treat wastewater containing azo dye. The baffles made of Plexiglas covered by TiO2 nanomaterials placed vertical in the reactor, were used. Using this reactor could enhance in the wastewater passage time, decrease in contact distance due to existence of the colored wastewater and the effect of preventing the passage of UV ray, bring about turbulence in the current, prevent from short circuit phenomenon, increase at the current length, and cause enhancement in effective surface against the relatively low occupancy level that make it possible to construct this kind of reactors in larger scales. The dimensions of the Reactor were 20 cm*25 cm*50 cm and the baffle dimensions used in the reactor were selected 20 cm*12 cm. The photocatalyst particles were fixed on baffles and then the experiments were conducted based on the experimental design by Design Expert software. In order to ensure adequate waste water to pass from the photoreactor, the rotary flow regime was used in the original design. In the research, Methyl orange one of the anionic dyes with the chemical formula C14H14N3NaO3S was used. This azo dye was the kind of amino benzene and has a functional azoic group (-N = N-) and cofactors NaSO3 and now widely used in dyeing textile, wood, paper, leather and printing applications. In order to investigate the effect of the main factors and optimizing colored wastewater treatment process by using TiO2 nanoparticles in the baffled reactor Response Surface Methodology, central composite design (CCD), was used. Based on the results, reducing the pH and initial dye concentration had synergetic effect on color and COD removal simultaneously. The effect of pH less than 5 and less than 75 mg/L concentrations are more rapidly. This phenomenon was a result of amphoteric behavior of TiO2 and the weakening of oxidation ability of the produced holes in alkaline conditions. The pH of the solution influence on how the TiO2 surface is ionized and leads to amphoteric behavior the TiO2 nanoparticles under different conditions and this behavior changes the oxidation ability of the process. Another reason for this phenomenon could be described as the reduction in light penetration due to increased dye concentration in the solution and the more dye adsorption on the surface of TiO2 causes a part of UV energy is absorbed by the molecules of the dye. Although Methyl orange is an anionic dye with the negatively charged sulfonic group thus in high pH, hydroxyl radicals lose the chances of reaction with the trapped dye quickly. At the same time reducing the pH and increasing the reaction time also increases the efficiency of COD and color removal and enhanced for the pH below 4 and after 6.5 hours for dye removal and at pH below 5 and after 8 hours for COD removal. This was due to increased opportunities for photocatalytic activity in acidic pHs reduce the initial dye concentration and increase the reaction time had amplified effect in efficiency of decolorization and reduction of COD. The rate of the phenomena was more obvious for the dye concentration less than 50 mg/L and after 8.5 hours. The results showed that the color removal efficiency was more than COD removal efficiency. The most noticeable reason for this phenomenon is the breaking of the colored azoic bond and producing colorless intermediate products that decrease removal efficiency during tests. The maximum amount of COD and color removal when the 50 mg /L initial dye concentration and at the pH= 5 were 98.81 and 69.7 percent, respectively, after 9.5 hours. The results data comply with reduced quadratic model with a correlation coefficient (R2) 94.95 and 95.30 percent for color and COD removal respectively that validate the model results. Laboratory assessment also indicated that due to the very small difference between the results of the represented model and the experimental data, the model was consistent with acceptable confidence level.
M.k. Tahmasebi, R. Shamsoddini, B. Abolpour,
Volume 20, Issue 2 (1-2020)
Abstract
The motion of the liquid free surface in a container (sloshing phenomenon) inserts a momentum on the container walls. This makes a great disorder in the movement of the carrier vehicle or inserts a large force and momentum on the container walls. The reason for this phenomenon is the establishment of destructive waves and hydrodynamic forces. The side effects of this phenomenon in various industries, such as ship industries carrying liquid fuels, liquid fuel rocket industries, fuel tanks or water tanks, increase the importance of predictions of the behaviors of this phenomenon. One way of controlling is to use baffles or plates in the transverse direction of the tank. In this study, the governing equations on this phenomenon have been solved using the OpenFOAM software. This software solves partial differential equations using the finite volume method, which by default considers geometry to be three dimensional. In order to solve the two-phase flow, a modified volume of the fluid model (VOF) is applied and the moving mesh model is used for the movement of the container body. In the VOF method, the phases are expressed as a fraction of one (volume fraction). To determine this parameter, based on the continuity equation, a differential equation is regulated and solved. For the turbulent flow model, a modified k-e model is used by considering the effects of free-surface flows. Also, an experimental model of a real moving liquid container has been used for validation of the predictions of the presented simulation. The results show that the experimental and numerical results are in good accordance. In addition, the results show that using vertical baffles up to 50% can reduce the fluctuations caused by this phenomenon.
Volume 23, Issue 2 (5-2023)
Abstract
By studying the literature on liquid storage tanks and their seismic behavior, it is observed that sloshing waves have caused severe damages to the walls and upper parts of these structures. As a remedy, some researchers have provided passive control systems to mitigate the seismic responses; one of these passive systems is annular baffles which are mounted on different heights of the tank wall. In the present study, seismic behavior of the slender and broad fixed-based tanks with baffles of different geometries have been examined; for this purpose, the deformation of the tank shell and baffles in the time and frequency domains are considered. The coupled acoustic-structure formulation based on fluid pressure and structure displacement has been used in the framework of linear finite element method in ABAQUS commercial software. At the interaction surface, fluid pressure and the normal acceleration of the structure interact with each other using the surface-based interaction capability of the ABAQUS software. The liquid is assumed to be compressible, inviscid and irrotational, and seismic loading is applied to the liquid-filled storage tanks' supports. The models are verified by comparison with the results that are reported in the literature in frequency and time domains. A parametric study is performed on Ri/R radius ratio and h/H distance ratio of baffles in the slender and board tank. Results indicated that in the frequency domain, the geometry with ratios (Ri/R=0.3, h/H=0.1 ) of the baffles which has the biggest radial coverage and the smallest distance ratios from the liquid surface, has the highest reduction effect on the frequency of the first convective mode of the slender and broad tanks, equal to 43% and 68%, respectively. Therefore, top-mounted baffles with considerable radial coverage, have higher effects on reducing the frequency of the first convective mode of the tanks. Baffles have fewer effects on the frequency of the first impulsive mode than on the first convective mode. Besides, analyses in the time domain revealed that top-mounted baffles with medium and small radial coverage in the broad tanks caused the increase of the sloshing wave amplitudes by about 68%, at worst cases. Baffles with less effects on the first convective modes were more effective on decreasing the sloshing wave amplitudes. Therefore, satisfactory performance of the baffled liquid tanks may not be obtained by solely relying on the frequency of the first convective mode of the tanks, due to unwanted increase of sloshing amplitudes in the special cases of liquid tank geometry and baffles. According to the results, in the board tanks, top-mounted baffles may amplify the seismic response of the system and thus, considerable attention is required on the use of passive devices in such tanks. Unlike the broad tanks, baffles have satisfactory influences on the seismic behavior of the slender tank. It’s recommended that when the baffles are used as a passive controlling system in a broad tank, all of the tank responses such as base shear, hydrodynamic pressure, and etc. to be considered; since, these responses may increase significantly if top-mounted baffles are used. Analysis in time domain also indicates that the differentiation between the slender and broad tanks in studying the baffles' effects is crucial. In general, using middle-mounted baffles is recommended as an efficient passive system to mitigate the sloshing waves in broad tanks.