Search published articles
Showing 2 results for Cake Formation
Ehsan Davarpanah, Ali Reza Teymourtash,
Volume 18, Issue 6 (10-2018)
Abstract
Applying membranes with especial geometries and fouling characteristics has been an area of research and a subject of interest in membrane science community. While a considerable part of fouling happenings are originated from chaotic roots such as Brownian motions, the remainders can be scheduled to approach on desired filtration features. Here in this study the somehow invisible features of progressive fouling which is the case for novel micro-engineered membranes was realized in some details. The problem of progressive fouling was considered as a result of dead-ended filtration of non-colloidal particles over a vertically extended pore geometry. It was shown that, in this filtration apparatus, due to a serialized activation and deactivation of flow passages, progressive fouling can change its seat with other more flow resistive classical types of surface and pore blockings and control filtration path more apparently. Results was considered for different amounts of pore extension and porosities. It was found that employing an especial set of pore extension length and porosity make it feasible to derive manageable filtration processes with high levels of purification and permeation performances.
E. Davarpanah, A.r. Teymourtash ,
Volume 19, Issue 5 (5-2019)
Abstract
Applying numerical methods for predicting cake formation and development in cross-flow membrane filtration has been an area of research. The solutions, which are mainly based on the development of zero, one, or two-dimensional methods for estimating filtration parameters, have always suffered from an obvious need for some calibration steps. In this paper, an independent two-way solving method is presented to determine the time variation of the geometry of the cross-flow filtration cake, so that by simultaneously solving the flow through the lattice Boltzmann (LB), it is possible to solve the convection-diffusion equation, using another mesoscopic method (LB-CA) in a two way coupling manner between flow changes and cake growth. Applying LB-CA provides it for all kinds of internal and external forces effects on particles trajectories to be explicitly taken into account. The proposed model was validated against both of theory of Romero and Davis and some experimental results. Moreover, the model was used to determine external effects which are arisen from static imposition of a DC electric field, on cross-flow filtration outcomes. The calculated results exhibits considerable improvements in flux decline curve and removing of fouling in some areas along the membrane length, as DC voltage rises. Also, optimal conditions with considering the electric poles’ size as an optimization parameter shows that with considering the maximum improvement in the flux curve as the target parameter, the electric poles’ size has an optimal value.