Search published articles


Showing 13 results for Low Velocity Impact

, ,
Volume 13, Issue 3 (6-2013)
Abstract

In this paper, analytical solutions of low velocity transverse impact of a nanoparticle on a nanobeam are presented by using the nonlocal theory to bring out the effect of the nonlocal behavior on dynamic deflection. Impact of a mass on simply supported and clamped nanobeams are investigated by using nonlocal Euler–Bernoulli beam theory. In order to obtain an analytical result for this problem, an approximate method has been developed wherein the applied impulse is replaced by a suitable boundary condition. A number of numerical examples with analytical solutions for both nonlocal and classic beam have been presented and discussed. The dynamic deflection predicted by the classical theory is always smaller than those predicted by the nonlocal theory due to the nonlocal effects. The inclusion of the nonlocal effect increases the magnitudes of dynamic deflection and decreases frequencies. Furthermore, the mass and the velocity of the nanoparticle (striker) have significant effects on the dynamic behavior of nanobeam.
, , ,
Volume 13, Issue 8 (11-2013)
Abstract

In this article, analytical solutions of low velocity transverse impact on a nanobeam are presented using the nonlocal theory to bring out the effect of the nonlocal behavior on dynamic deflections. Impact of a projectile (mass) on simply supported and clamped nanobeams are investigated using nonlocal Timoshenko beam theory. In order to obtain an analytical result for this problem, an approximate method has been developed wherein the applied impulse is replaced by a suitable boundary condition and initial momentum of projectile and nanobeam. A number of numerical examples with analytical solutions for nonlocal nanobeam and classical beam (steel and aluminum) have been presented and discussed. When the value of the striker mass is increased, the frequencies are decreased and the maximum dynamic deflection at the center of the beam is increased for both of the simply supported and the clamped-clamped nanobeams. The inclusion of the nonlocal effect increases the magnitudes of dynamic deflections and decreases frequencies. Furthermore, the mass and the velocity of the nanoparticle (striker) have significant effects on the dynamic behavior of nanobeam.
Rahmatollah Ghajar, Akbar Rassaf Sohi,
Volume 14, Issue 10 (1-2015)
Abstract

In this research, low velocity impact tests have been carried out on laminated composite plates to investigate the impactor shape and temperature effect on the dynamic behavior and material damage. The woven E glass/ epoxy laminates were manufactured. The studies have been done on plate with dimensions of 120 mm× 120 mm× 3 mm, impactor with 1.4 m/s incident velocity and 7 kg mass. Specimens have been impacted by using steel flat, hemispherical, ogival and conical impactors, all 12.7 mm in diameter. The specimens impacted by the conical impactor absorbed most energy because of local penetration. The flat impactor caused the highest peak force and lowest contact duration as expected. The force history of the impactor, projectile displacement and absorbed energy of different impactor shapes has been measured and compared with each other. The temperatures were in the range of room temperature to 150 °C. The parameters including maximum contact force, projectile displacement and the absorbed energy of different temperature have been investigated. Maximum contact force decreased with increasing of temperature, and deflection of impactor increased with increasing of temperature.
Keramat Malekzadeh, Gholam Hasan Payganeh, Fahimeh Rashed Saghavaz,
Volume 14, Issue 13 (3-2015)
Abstract

In this paper, the free vibration and low velocity impact response of a sandwich plate with a Magneto Rheological (MR) flexible core have been studied. The rectangular sandwich plate contains a Magneto Rheological (MR) flexible core and two constrained layers. The MR materials have different properties with respect to different magnetic field intensities. The governing equations of motion have been derived using Hamilton principles. The solution of these equations was obtained using Fourier series and analytical systematic procedure. Using the proposed solution method, the natural frequencies, structural loss factors, impact load and transverse deflection of the plate were calculated. Also, the contact force history was derived using a two degrees of freedom spring mass model analytically. The effects of variations of magnetic field intensity on the natural frequency, loss factors, contact force and deformations of the plate and impactor were investigated. In ordre to calculate the equivalent mass of the plate, the obtained fundamental natural frequency from solution of eigen value problem was used. The obtained equivalent mass of the plate was used in analytical spring mass model. The results show that with systematic variation of magnetic field, the magnitudes of transverse stiffness, structural loss factors and maximum contact force can be changed and controlled, respectively.
Gholam Hossein Liaghat, Sajjad Seifoori, Akbar Ali Beigloo, Mohammad Hossein Pol,
Volume 14, Issue 13 (3-2015)
Abstract

In this article, an improved 3D finite element (FE) model of low velocity transverse impact on armchair and zigzag single-walled carbon nanotubes (SWNTs) has been developed. Numerical examples for estimating the Young’s modulus of nanotubes are presented based on explicit and implicit analysis to illustrate the accuracy of this simulation technique. Based on explicit finite element model, the maximum dynamic deflections of single-walled carbon nanotubes with different boundary conditions, geometries as well as chiralities are obtained and then compared with theory investigation. Impact of a mass on simply supported and clamped nanobeams are investigated by using nonlocal Euler–Bernoulli and Timoshenko beam theory. The simulation results demonstrated good agreement with analytical results based on Euler–Bernoulli and Timoshenko nonlocal theory. When the aspect ratio is increased, the maximum dynamic deflection at the center of the beam is increased for both of the simply supported and the clamped-clamped nanobeams. The inclusion of the nonlocal effect increases the magnitudes of dynamic deflections. The dynamic deflections predicted by the classical theory are always smaller than those predicted by the nonlocal theory due to the nonlocal effects.
Soheil Dariushi, Mojtaba Sadighi,
Volume 15, Issue 9 (11-2015)
Abstract

A novel geometrically nonlinear high order sandwich panel theory for a sandwich beam under low velocity impact is presented in this paper. The equations are derived based on high order sandwich panel theory in which the Von-Karman strains are used. The model uses Timoshenko beam theory assumptions for behavior of the face sheets. The core is modeled as a two dimensional linear elastic continuum that possessing shear and vertical normal and also in-plane rigidities. Nonlinear equations for a simply supported sandwich beam are derived using Ritz method in conjunction with minimum potential energy principle. After obtaining nonlinear results based on this enhanced model, simplification was applied to derive the linear model in which kinematic relations for face sheets and core reduced based on small displacement theory assumptions. A parametric study is done to illustrate the effect of geometrical parameters on difference between results of linear and nonlinear models. Also, to verify the analytical predictions some low velocity impact tests were carried out on sandwich beams with Aluminum face sheets and Nomex cores. In all cases good agreement is achieved between the nonlinear analytical predictions and experimental results.
Reza Amooyi Dizaji, Mojtaba Yazdani,
Volume 16, Issue 4 (6-2016)
Abstract

This research investigated experimentally the effect of useing of 3D fiberglass fabric in the energy absorption in glass fiber metal laminate composite made by vacuum assisted resin transfer molding (VARTM) method. The prepared GLARE is made of two or three Aluminum 2024 facing sheets and E glass/epoxy as nano composite core. Composite core section for samples of glass fiber plain weave has been composed of plain weave glass fiber 200 g⁄m^2 , 3D fiberglass fabric samples consists of 3D fiberglass fabric to thickness of 5 mm, resin R510 and hardner H515. All panels fabricated using VARTM method in section glass fiber plain weave in fiber volume fraction of 71%. Low velocity impact tests were conducted using by drop weight device at the impact energy of 50 and 80 j. The results of the low velocity impact experiments show that the amount of resistance of impact plain weave samples in comparison to the 3D fabric in various energy levels is more and better. In applications where weight is an effective agent component, the weight of glass fiber plain weave base samples is less than 3D fiberglass fabric samples.
Reza Amooyi Dizaji, Mojtaba Yazdani,
Volume 17, Issue 2 (3-2017)
Abstract

In, this research, the effects of adding silica and multiwall carbon nanotubes (MWCNT) nano particles on the low velocity impact response are experimentally studied. Vacuum assisted resin transfer molding (VARTM) method has been used to manufacture nano composite with 11 layers of plain weave carbon fibers 200 g⁄m^2 , resin R510 and hardener H515 with 66% fiber volume fraction. Samples made of nano silica and MWCNT particles have been dispersed with 1 wt. %. The prepared CARALL is made of two Aluminum 2024 facing sheets. Low velocity impact tests have been conducted using by drop weight device at the impact energy of 20, 40 and 60 j with velocity of 2.6, 3.68 and 4.5 m⁄s . The results of the low velocity impact experiments indicates that the MWCNT improves performance of fiber metal composite material and the effects of MWCNT in improving the impact properties of fiber metal laminate composite is better than of nano silica. Better adhering and dispersion of MWCNT and strong interfacial creation are some other effect factors of impact response sample reinforced with multiwall carbon nanotubes in comparison to nano silica.
Mohammad Ghayoomi Mohammadi, Ali Mahdian Ahi, Jalal Yousefi, Mehdi Ahmadi Najafabadi,
Volume 17, Issue 7 (9-2017)
Abstract

One of the main issues associated with application of laminated composites in industrial applications is their brittle-type behavior under impact loading. The low velocity impact may lead to crucial internal damages without being detectable by visual inspection and can significantly reduce the strength of laminated composites. The main purpose of this research is to characterize the damage mechanisms in laminated composites under low velocity impact tests. For this purpose, a quasi-static test was first utilized out to achieve initial information about impact tests. Low velocity impact tests were then employed for unidirectional glass/epoxy composite specimens, and Acoustic Emission (AE) signals were acquired during impact events. Next, AE signals were examined using wavelet approach to discriminate released energy related to each distinct damage mechanism. Besides, a method was obtained to estimate threshold impact energy from the quasi-static test, beyond which damage meaningfully extends. As a final point, the AE based approach using wavelet transform methodology was suggested to forecast the total damage area. Finally, it was figured out that this AE method can be a reliable approach in damage evaluation under impact loads in composite structures.
Mohammad Ekrami, Hamed Ahmadi, Mohammad Bayat, Hadi Sabouri,
Volume 17, Issue 7 (9-2017)
Abstract

In this paper, drop weight impact tests using projectiles with different nose shapes on GLARE 3 are examined experimentally. GLARE targets are made of two aluminum sheets and six composite layers by hand lay-up method. The composite layers are constructed using unidirectional E-glass fiber and cy219 resin with adding hy5161 as a hardener. The projectiles are manufactured in flat, hemispherical and conical 90̊ nose shapes and hardened. The projectiles collide to targets with initial impact energies of 40, 55 and 70 Joule. In this study, the effects of nose shape at the maximum impact force, the penetration, the energy absorption, and damage zone are examined. The results show that conical projectile in all three impact energies and hemispherical projectile at 55 and 70 Joule fully penetrate targets. Under impacts of the flat projectile, a shear plug is formed on the upper face of targets and a plastic deformation is created on the bottom face of targets in impact energies of 40 and 55 Joule. For hemispherical projectile at 40 Joule and for flat one at 70 Joule, the tensile stresses in the aluminum sheet located at the bottom face of target result in longitudinal crack. Moreover, results show that the maximum and minimum contact force and energy absorption are occurred in the projectile with flat and conical nose shapes, respectively.
Farshad Akbaripanah, Reza Sadvandi, Mehdi Ranjbar,
Volume 17, Issue 10 (1-2018)
Abstract

In this research, analytical and numerical investigation of the ceramic- metal FGM beam under low velocity impact is carried out by first order shear deformation beam theory. The mass and stiffness matrixes are proposed by combination of Energy method, Ritz and Lagrange method. Also, simulating of low velocity impact on the ceramic- metal FGM beam is carried out by ABAQUS software that the beam is divided about 30 layers in thickness direction in ABAQUS software to create a functionally graded beam. Maximum contact force between impactor and beam in analytical model and ABAQUS software are 1062 and 1039 N with 2.21 percent difference and maximum impactor displacement in analytical model and ABAQUS software are 0.0104 and 0.0108 mm with 3.85 percent difference. Finally, the effect of FGM function types include the combination of exponential and polynomial functions, impactor velocity 1, 2 and 3 m/s, impactor radius 8, 12.7 and 16 mm and simply and clamped supported boundary condition are investigated on the contact force and indentation histories. The maximum and minimum contact forces are belonging to first and third order polynomial function and maximum and minimum indentations are belonging to third and first order polynomial function.
Mehran Ghalami-Choobar, Amar Bayat, Gholam Hossein Liaghat, Hamed Ahmadi,
Volume 17, Issue 12 (2-2018)
Abstract

In this paper, low velocity impact on nano-beam using couple stress theory was investigated. Modified couple stress theory was utilized to capture size-dependent effects. Hamilton’s principle was employed to derive governing equations and boundary conditions and then general solution was proposed. The solutions validity was confirmed by comparing present results with that of the literature. Comparing the results shows the present theory is capable to predict low velocity dynamic behavior with acceptable accuracy. The results show as mass ratio increased, natural frequencies decreased and then trend to a constant value. This limit is higher for second and third natural frequencies. Also, the natural frequencies increased when characteristic length to thickness ratio increased. It can be noted higher natural frequencies are more sensitive to variation of this ratio .Furthermore, maximum dynamic deflection raised when mass ratio increased. Moreover, a considerable result from this study is the profound effect of poison ratio on natural frequencies for nano-sized beams. As Poisson’s ratio increased, natural frequencies increased. Also, for low length scale to thickness ratio the size effect is insignificant and response trend to classic solution. Therefore, the couple stress theory can be employed to take into account size effects in low velocity impact on nano-beam problem.
Shidokht Rashiddadash, Mojtaba Sadighi, ,
Volume 18, Issue 4 (8-2018)
Abstract

Large and/or complicated sandwich structures are often manufactured by connecting pre-fabricated sandwich panels by means of connections, adhesive or bolts. In nearly all sandwich constructions certain types of joints have to be used for assembly but little is known about their mechanical behavior. This paper deals with the investigation of the behavior of two aluminum joints with different geometries under low velocity impact tests. These two joints are used to connecting sandwich panels with glass-epoxy skins and aluminum honeycomb core. The joints and sandwich panels are connected by means of epoxy resin. After construction of the specimens, low velocity impact tests were performed on the specimens. Finite element analysis were used to simulate the behavior of sandwich panels with connection. Verification of the numerical results was performed by comparing the numerical and experimental results. There was a good compliance between numerical and experimental results. Also, the effect of increasing the length and the thickness of the connections on the behavior of the sandwich panel was done through a parametric study using the FEM model.

Page 1 from 1