Showing 3 results for Modified Quadrotor
Mohammad Ali Tofigh, Mohammad Mahjoob, Moosa Ayati,
Volume 15, Issue 8 (10-2015)
Abstract
In this paper, modeling and design of a trajectory tracking control system for a novel multi-rotor UAV (Unmanned Aerial Vehicle) is developed. The UAV is similar to a quadrotor with an extra no feedback propeller which is added to center of vehicle. The additional rotor improves the ability of lifting heavier payloads, and anti-crosswind capability for quadrotor. For validation, the dynamic model is obtained via both Newton Euler and Lagrange approaches. The dynamical model is under actuated, nonlinear, and has strongly coupled terms. Therefore, an appropriate control system is necessary to achieve desired performance. The proposed nonlinear controller of this paper is an input-output feedback linearization companioned with an optimal LQR controller for the linearized system. The controller involves high-order derivative terms and turns out to be quite sensitive to un-modeled dynamics. Therefore, precise model of UAV is derived by considering actuator’s dynamics. To compensate the actuator’s dynamic and moreover, to avoid complexity in the controller, a second control loop is utilized. The obtained simulation results confirm that the proposed control system has a promising performance in terms of stabilization and position tracking even in presence of external disturbances.
Mohammad Ali Tofigh, Mohammad Mahjoob, Seyed Mousa Ayati,
Volume 15, Issue 9 (11-2015)
Abstract
In this paper, modeling and tow type of nonlinear controller for trajectory tracking of a novel five-rotor UAV (Unmanned Aerial Vehicle) is developed. Because of the very simple structure and high maneuverability, quadrotors are one of the most preferred types of UAVs but the main problem of them is their small payload. In the proposed novel model, one propeller is added to the center of vehicle to improve the ability of lifting heavier payloads, and to excel anti-crosswind capability of quadrotor. The dynamic model is obtained via Newton Euler approach. The model is under actuated, nonlinear, and has strongly coupled terms. Also, two types of nonlinear controllers are presented. First one is a conventional input-output feedback linearization controller which involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. Second controller is a BackStepping controller based on the hierarchical control strategy that yields easier controller. The obtained simulation results confirm that the performance of BackStepping controller is convenient in terms of stability, position tracking and it is robust in presence of disturbance.
Mohammad Ali Tofigh, Mohammad Mahjoob, Moosa Ayati,
Volume 15, Issue 9 (11-2015)
Abstract
In this paper, modeling and feedback linearization controller for trajectory tracking of a novel six-rotor UAV (Unmanned Aerial Vehicle) is developed. Because of the very simple structure and high maneuverability, quadrotors are one of the most preferred types of UAVs but the main problem of them is their small payload. In the proposed novel model, two coaxial propellers are added to the center of vehicle to improve the ability of lifting heavier payloads, and to excel anti-crosswind capability of quadrotor, while the dynamic and steering principle is preserved. The dynamic model is obtained via Newton Euler approach. Model is under actuated, nonlinear, and has strongly coupled terms. Also, two types of nonlinear controllers are presented. First one is a conventional input-output feedback linearization controller which involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. Second controller is a feedback linearization based on the hierarchical control strategy that yields easier controller. To compensate actuator’s dynamic and moreover, to avoid complexity of controller, a two-stage algorithm is utilized. The obtained simulation results confirm that the performance of hierarchical controller is more convenient in terms of position tracking and disturbance rejection than conventional controller.