Search published articles


Showing 715 results for Nano


Volume 0, Issue 0 (1-2024)
Abstract

This study aimed to increase the vase life of cut rose flowers by improving the regulation of Programmed Cell Death (PCD). Experiments were carried out on cut rose (Rosa hybrida cv. Dolce vita+) flowers under either physical treatment of Static Magnetic Field (SMF; 15 and 25 mT) for 3 hours, or chemical treatments of silver nano particle (Nano-Ag; 5 and 10 ppm), 6-Benzyladenine (BA; 25 and 50 mg L-1), 1% sucrose, and combinations of 5 and 10 ppm nano-Ag with 3 and 6% sucrose. Results showed that a 15 mT-SMF significantly increased vase life up to 25 days, compared to the controls and to all chemical treatments. Among the chemicals, 5 ppm Nano-Ag and 1% (w/v) sucrose increased vase life to 23 and 18 days, respectively. The smallest decline in fresh weight was observed in the 15 mT-SMF physical treatment. Markedly, the 15 mT-SMF treatment led to the least reduction in Chlorophyll (Chl) content. On the 17th day of the applied different treatments, both Water Uptake (WU) and Relative Fresh Weight (RFW) showed an inverse significant relationship with PCD in cut rose flowers, verifying there markable delayed PCD which is favored the market. As a whole, the most effective induced treatments (15 mT-SMF, 5 ppm Nano-Ag, and 1% Sucrose) are suggested to be promising for enhancing postharvest quality and prolonged vase life of cut rose flowers.


Volume 0, Issue 0 (1-2024)
Abstract

Controlling insect pests through nano-based formulation of chemicals is one of the newly applied methods in IPM programs; however, the probable side impacts of nano-pesticides on non-target organisms need to be evaluated. In this study, deltamethrin and matrine were encapsulated with polyethylene glycol (PEG) and chitosan (Cs), respectively, and their toxicity were investigated against Habrabracon hebetor Say using the contact method. According to the scanning electron microscopy (SEM), spherical nanoparticles for both formulations were observed. The average hydrodynamic nanoparticle diameters for deltamethrin and matrine were 65 and 70.5 nm. The LC50 values were 254.48, 334.90, 760.31 and 1021 mg L-1 in PEG-encapsulated deltamethrin, commercial deltamethrin, Cs-encapsulated matrine, and commercial matrine, respectively. Exposing to the LC30 of the commercial and nano-encapsulated deltamethrin significantly prolonged the total pre-adult period. The adults of H. hebetor in PEG-encapsulated deltamethrin treatment had the lowest longevity compared to other treatments and control. Furthermore, the sublethal exposure to the PEG-based nanoformulation of deltamethrin and commercial deltamethrin resulted in a significant reduction of the intrinsic rate of natural increase (rm) (0.159 and 0.168 day-1, respectively). Same trend was observed for the gross reproductive rate (GRR), net reproductive rate (R0), and finite rate of increase (λ) of the parsitoid. Our findings indicate that the negative side effects of commercial and nano-based formulations of deltamethrin on H. hebetor should be considered in IPM programs.
 

Volume 0, Issue 0 (8-2024)
Abstract

Aluminum nano-films are one of the functional elements that have various applications in different fields such as strengthening cement base materials, improving the performance and efficiency of concrete, and enhancing the mechanical and volumetric properties of clay. In this study, the mechanical responses of aluminum nano-film are investigated under uniaxial tensile and compressive tests using the molecular dynamics (MD) method. The initial configuration of the nano-film is constructed based on a 3D aluminum core—alumina shell model that provides a suitable description of surface oxidation in the nano-film. This model is useful to determine the influence of surface oxidation on the mechanical behavior of nan-film. Because of the accuracy and competency, the inter-atomic interactions are evaluated using the EAM+CTI potential, which is a hybrid potential consisting of two components, i.e., EAM and CTI potential, such that it can also take into account the electrostatic interactions between the atoms. After establishing the initial configuration, the energy minimization process is performed on the nano-film, and then its temperature and pressure are adapted to the environmental conditions through the relaxation process. The MD analysis is accomplished by the open-source LAMMPS software, and the visualization of outputs is performed by the open-source OVITO software. The periodic boundary condition is imposed on the lateral sides of the nano-film to eliminate the free surface effect of the atomistic analysis. The tensile and compressive tests are applied to the nano-film in accordance with the experimental tests, and the stress—strain curves are determined. The concept of Virial stress is employed to calculate the stress of the atomic model, which is equivalent to the conventional Cauchy stress in classical mechanics. In order to diminish the dynamic effects, deformation is incrementally applied to the nano-film, such that at each increment, a small strain is gently imposed, then the nano-film is relaxed under the deformed conditions, and finally the stress and strains are evaluated. The numerical simulations are verified by comparing them with experimental data, which demonstrates the acceptable accuracy of the obtained numerical results. The influence of various parameters such as the thickness and the percentages of oxide layers are investigated on the mechanical response and stress-strain curve of aluminum nano-film under the uniaxial tests. It is demonstrated that the thickness of the oxide layer significantly impacts the mechanical behavior, such that the hardness and energy absorption capacity of the nano-film is increased considerably by increasing the percentage of the oxide layer thickness. However, increasing the total thickness of the nano-film leads to a decrease in the Young’s modulus and elastic limit of the specimen. It is because of the decrease in the percentage of oxide layer thickness by increasing the total thickness of the nano-film. Point defects are one of the important imperfections in the crystal structures of atomic configuration that have a significant effect on the mechanical behavior of materials. In order to investigate the influence of point defects, different percentages of voids are generated by randomly omitting some atoms in the nano-film domain. The generated specimens are analyzed under the uniaxial tests, and their mechanical characteristics are evaluated. The numerical simulations demonstrate that the hardness of the nano-film is significantly reduced by increasing the point defects.
 

Volume 0, Issue 0 (8-2024)
Abstract

Soil stabilization techniques have traditionally relied on cement or lime, yet there remains a significant knowledge gap regarding the mechanical behavior of soil treated with innovative materials. Addressing this gap, this study delves into the mechanical properties of soil stabilized with polyurethane (PU) foam, nano-silica, and basalt fiber. Through rigorous experimentation, unconfined compressive strength (UCS) and direct shear tests were conducted on reconstituted silica and calcareous samples, each treated with various combinations of these additives. A comprehensive examination of parameters such as additive content and curing time was undertaken to elucidate their effects. The results unveiled a noteworthy enhancement in UCS and shear strength parameters (cohesion and friction angle) with the incorporation of PU foam, nano-silica, or their amalgamation with fiber. Particularly striking was the superior performance observed with the combination of PU and basalt fiber, showcasing remarkable improvements in the mechanical behavior of both silica and calcareous sand, especially when considering shorter curing times. The synergistic effects of PU and basalt fiber proved instrumental in fortifying the soil's structural integrity against environmental challenges. Furthermore, it was consistently observed that calcareous samples exhibited elevated UCS, and shear strength values compared to their silica counterparts. This discrepancy underscores the inherent differences in mechanical behavior between these two types of sand, highlighting the need for tailored stabilization approaches. Moreover, the investigation delved into the failure patterns and microstructural changes within the stabilized samples, employing Scanning Electron Microscopy (SEM) for detailed analysis. This microscopic examination offered valuable insights into the efficacy of the stabilizing agents and their impact on the soil's mechanical properties. For instance, SEM imaging revealed significant bonding in fiber-reinforced samples, indicating enhanced load transfer mechanisms. Similarly, the presence of clusters of nano-silica particles adhering to sand particles showcased an improved cohesion within the stabilized soil. PU-stabilized samples, on the other hand, exhibited a cohesive layer enveloping sand particle, thereby enhancing interparticle connectivity and overall stability. The superior performance of PU over nano-silica was underscored by its ability to create a more cohesive matrix and foster stronger interparticle bonds, as evidenced by the SEM analysis. In conclusion, this study sheds light on the potential of innovative stabilization materials such as PU foam, nano-silica, and basalt fiber in bolstering the mechanical properties of soil. The findings not only offer valuable insights into the efficacy of these additives but also pave the way for the development of tailored soil stabilization techniques geared towards enhancing infrastructure resilience and sustainability.
 

Volume 1, Issue 1 (10-2011)
Abstract

The adjective "sustainable” is used for worldwide explanation where both human and nature can live up to their present needs, sustain the rights of future generations and protect the environment without the existence of destructive effects. Use of natural resources accordingly to provide today’s human needs and not to become dangerous for  future’s human needs is the issue that leads architects to follow the principles of sustainable development. In this investigation, improving of climatic technology and use of climatic condition and natural resources in traditional architecture of Iran and contemporary architecture will be studied. It is often forgotten and even ignored that architectural traditions are rich in content, given that they have found the right harmony between the necessities of living, the environment, material resources and ideas on the use of space. Using these criteria, contemporary architecture could take a direction where cultural continuity and adaptability not only take pride place but also provide guidelines for climate-adapted and sustainable architecture. However, during the last decades, the impact of socio-economic and cultural changes on traditional environments has become obvious. Contemporary design is increasingly depending on the mechanically controlled environments in order to maintain comfort, hence, increasing energy consumption. For achieving this goal, first, the importance of climatic traditional architecture of Iran and its principles of designing will be noticed. In other words, we will find how climatic architecture can influence sustainable development by using renewable energy resources like wind and solar energy and climatic condition. In this part, the paper focuses on the role of climatic responsive design, building situation in a site and angle of sunlight, building form, building roof, interior thermal comfort and natural air ventilation. In the second part, we will study the role of new and smart technologies in achieving sustainable development goals. As we know, time is passing and human knowledge develops every day, so it is necessary to pay attention to new and smart technologies behind the climatic responsive design until we can design buildings in respect of human comfort that are conformable with sustainable development as well. So, according to revolution have been existed by nanotechnology. It is noticed to Nano smart Technology and using of renewable energies. Undoubtedly, nanotechnology can provide many opportunities for architects and engineers for enhancing the construction material and decreasing their weak points and increasing their advantages. Buildings have the main role in balancing energy consumption. Solar energy, which is known as Photovoltaic energy can provide energy without using fossil fuels. Due to the importance of photovoltaic energy for improving of the efficiency and flexibility of solar cells, they have been widely studied. In this case, Nano- technology has made some progress in providing energy from wind and sun in micro scale. The main goal of this article is to study on climate design and usage of new technologies. Climate design refers to the principles that we follow in traditional architecture, where the materials are clay and brick. However, now that the material and construction technology have been improved; the question is how we can have a conformable architecture with sustainable development?

Volume 1, Issue 1 (12-2017)
Abstract

In this research,nanocomposite coatings based on epoxy containing pristine graphene oxide and starch-modified graphene oxide are prepared and characterized by Fourier transfer infrared spectroscopy, andtheir crosslinking behavior is studied using nonisothermal differential scanning calorimetry.These nanocomposites, because of having platelet-like nanomaterials inside and their organic origin, can be applied as coating on metal surface in diverse industries.The reason behind using starch was its natural basis and abundance of hydroxyl groups in its structure which can take part in crosslinking reaction with epoxide. Neat epoxy systems having amine curing agent, and nanocomposites containing epoxy, amine curing agent, andpristine or starch-modified graphene oxide nanosheets were cure at different heating rates to assess their curing behavior. Change in hearing rate of test caused change in onset and peak temperature of the exotherm curves and consequently heat of reaction changed. It was observed that the presence of the graphene oxide nanosheets hindered the crosslinking reactions, while surface modification of them with starch natural polymer compensated for such a hindrance via catalytic role of starch, and increased crosslink density of system. 

Volume 1, Issue 1 (12-2017)
Abstract

Oil resistant o-rings on the basis of acrylonitrile butadiene rubber (NBR) reinforced by nanoclay were produced via a traditional industrial method in accordance with aviation standard, AMS 7272. The production of nanocomposites comprised the compounding of nanocomposite with optimum mechanical properties and minimum contents of used carbon black and nanoclay, design and manufacturing of the required mold and finally compression molding of the oring. Mechanical and morphological properties of NBR/nanoclay compounds were optimized by introduction of proper contents of a compatibilizer containing a mixture of resorcinol and hexamethylene tetramine through using a master batch production method. The prepared nanocomposites were characterized using X-ray diffraction (XRD) analysis, curing measurements and tensile test analysis. The XRD analysis showed that the compatibilizer facilitates the intercalation of nanoclay silicate layers with the rubber chains which leads to the increase of their basal spacing. The cure characteristics of the nanocomposites showed a decrease of scorch time and increase the cure rate index with the nanoclay loadings. Furthermore, the minimum scorch time and maximum cure rate index could be achieved through using the appropriate content of compatibilizer. The results exhibit that the nanocomposites containing the compatibilizer have higher mechanical properties especially at higher deformations compared to the corresponding uncompatibilized nanocomposites

Volume 1, Issue 1 (3-2023)
Abstract

Nowadays, application of enhanced oil recovery methods has increased; therefore it’s necessary to determine their impacts on environment and human life. So, this research investigates the environmental impacts of conventional enhanced oil recovery methods and new methods such as using electromagnetic waves, ultrasound waves, and nanoparticles. The investigations show that electromagnetic waves and ultrasound can effectively remove many environmental pollutants. Characteristics of the wave and the type of formation determine that these waves have different effects on the formation, and efforts should be made to understand these effects to prevent damage to the formation. Nanoparticles can also reduce the quantity of pollutants in the environment. According to the mechanisms of entrapment of nanoparticles in the porous medium, they may remain in the reservoir and find their way to the underground water over time, so their environmental effects should be considered in the long term. A better knowledge of new methods of increasing oil extraction will lead to the identification and use of more suitable methods with less environmental effects (compared to conventional methods).

 


Volume 1, Issue 2 (3-2018)
Abstract

Presence of filler in the polymeric materials changes the mechanical, dynamic-mechanical, rheological properties and even the swelling behavior of rubber composite due to mechanisms such as hydrodynamics, polymer-filler and filler-filler interactions. Swelling in rubber composites directly affects the polymer chains, also can affect indirectly other structures in composites such as the filler network and reduce mechanical properties suddenly. In this study, the nitrile rubber-nanosilica composite containing different concentrations of modified nanosilica was prepared and the composite structure was studied through rheological, mechanical, dynamic-mechanical tests. Also it was found that the filler network containing over percolation threshold 13phr of filler concentration has a significant contribution to the mechanical properties of composites. To determine the swelling effect on the prepared composite structure, with different degrees of solubility were used. The mechanical properties of the samples were measured in equilibrium swelling state for each of the solvents The decrement of the mechanical properties between the dry samples and swelled ones containing 14.4, 20 and phr 6.25 silica in solvent with 15% toluene is significant. These intensive changes in mechanical properties that happen at the low degree of swelling are attributed to the removal of the filler network. Therefore, controlling the swelling of rubber parts in adjacent to the solvent, plays the fundamental role in their performance.

Volume 1, Issue 2 (3-2018)
Abstract

Dispersion type of layered clay plated in aqueous media creates different structures and affects the final properties of its suspension. On the other hand, the presence of different electrolytes in some industrial applications affects the stability of clay suspensions. Considering the application of clay nanoparticles in various industries and the importance of this subject, in this research, the effect of preparation method, nanoparticle concentration, type and ionic strength of electrolytic medium and time elapsed on the stability behavior of laponite nanoparticles suspensions were studied. The results showed that preparing of the suspensions indirectly, results in more stable samples. It was observed that with increasing of sodium chloride concentration, the repulsion between the clay plates decreased and the phase separation and instability of the suspensions increased at higher NaCl concentrations. Furthermore, it was seen that in all electrolyte media, gel-like structure develop with increasing of nanoparticle concentration. In presence of bi-valance CaCl2 salt, most of suspensions were unstable and have two phases and increasing of this salt concentration had not significant effect on their stability. In electrolyte media containing mono- and bi- valance salts (studied in this research), concentration of calcium cation determines the type of stability behavior of laponite nanoparticles suspensions.

Volume 1, Issue 2 (3-2018)
Abstract

In general, temporary well plugging is essential for repairing of oil and gas wells due to their long life time. One of the newest methods used for this purpose is gel polymer plugging. The strength of the gel in the well conditions is one of the most important challenges in the application of gel polymer in the temporary well plugging in work over operation. In this study, silica nanoparticles were used to improve the strength of polymer hydrogels. The bottle and rheological tests were used to determine the gel strength in desired well conditions (high temperature and high salinity). Also, the gel strength properties and swelling behavior were studied in various conditions such as distilled water, formation water, tap water and oil. It was observed that the strength of the gel increased from 520Pa to about 36kPa (5000% increase) by adding nanoparticles. Also, the gel swelling in the aqueous solution has been significantly reduced. Based on the results obtained in this study, a polymer gel containing 9 wt.% of silica nanoparticles with structural strength and thermal stability at 90 °C was introduced for field studies.

Volume 1, Issue 2 (7-2023)
Abstract

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Uranium (VI) from nuclear waste streams. The uptake behaviour of U(VI) from nitric acid solutions was investigated by batch studies.
Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial uranium (VI) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of U (VI) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.
 

Volume 1, Issue 3 (9-2013)
Abstract

In order to understand the importance of particle size and agglomeration for nano-eco-toxicological studies in aquatic environments, the acute toxicity of two different types (suspended powder and colloidal) of silver nanoparticles (AgNPs) were studied in alevin and juvenilerainbow trout. Fish were exposed to each type of AgNPs at nominal concentrations of 0.032, 0.1, 0.32, 1, 3.2, 10, 32, and 100 mg/L. Lethal concentrations (LC) were calculated using a Probit analysis. Some physical and chemical characteristics of silver nanoparticles were determined. In the case of colloidal form, particles were well dispersed in the water column and retained their size; but in the case of suspended powder, particles were agglomerated to large clumps and precipitated on the bottom. In alevins, the calculated 96 h LC50 values were 0.25 and 28.25mg/L for colloidal and suspended powder AgNPs respectively. In the case of juveniles, the 96h LC50 of colloidal form was 2.16mg/L, but suspended powder did not caused mortality in fish even after 21 days. The results showed that both in alevin and juvenile stages, colloidal form is much toxic than suspended powder; this shows increase of nanoparticles size due to agglomeration, will reduce the toxicity. Silver nanoparticles are toxic materials and their release into the water environment should be avoided.

Volume 2, Issue 1 (6-2018)
Abstract

In human-made materials, aerogels have the least thermal conduction coefficient. The least thermal conduction, which aerogels can have, is equivalent to air conduction, about 0.021W/mK. In some applications, lowest conductions is to be needed. In this study, novolac aerogles are used as spacer, for designing and making multilayer super insulators with aluminum foil reflective layers. The performance of these insulators, are extremely depends on density, porosity and the size of pores in aerogel and number of layers in the overall thickness of insulator. In this study, for decreasing effective thermal conduction of multilayer insulations, tow parameters of density of aerogel and ratio of number of layers to thickness of insulator (layer density), are examined in 25 ˚C to 200 ˚C boundary conditions. First, by assessment of aerogel novolac density effect on thermal conduction, aerogel with density of 0.076 g/cm3 was chosen as the best spacer. In the next part, ratio of 25 layer per centimeter of thickness was chosen as the best layer density. Finally, by making multilayer super insulators, based on this results, an insulator with 5×10-4W/mK effective thermal conductivity was obtaind without evacuation of spacer.

Volume 2, Issue 1 (6-2018)
Abstract

Aim: Most scientists are trying to treat cancer, and in this regard were produced numerous anticancer drugs, that adverse effects on non-target tissue. To overcome this, drugs freight to magnetic nanoparticles Chitosan and its carboxymethyl secondary coumpands are biopolymers that are non-toxic, biodegradable therefore found applications in biomedical field. We explain here that glycerol monooleate covered magnetic nanoparticles (GMO-MNPs) capable of transporting hydrophobic anticancer drugs. Method: In the present study, we have expanded 5-fluorouracil (5-FU) that loaded on chitosan MNPs for targeted cancer therapy. Results: The modified nano-adsorbent was then characterized by Fourier Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), elemental analysis of CHN (9) and thermal weighing analysis (TGA). Lab conditions such as pH, contact time were optimized. To analyze the structure of the sample, X-ray diffraction spectroscopy was used to investigate the magnetic properties of the nanosized particles synthesized by the magnetometer and to detect the phase type formed on the monolayer glycerol matrix network using a polarizing light microscope. Also, the study showed essential oil release in the external environment of 90% for 30 hours. Conclusion: The optimized magnetic nanoparticles according to SEM image, exhibited segregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of 5-Fluorouracil nanoparticles which indicated a well-established structure of nanoparticles.

Volume 2, Issue 2 (9-2018)
Abstract

In this research, general performance of Radial basis function (RBF) Artificial neural networks in experimental data on effect of the NiO, WO3, TiO2,ZnO and Fe2O3 nanoparticles in different temperatures and mass fractions on the viscosity of crude oil has been studied. The morphology and stability of the nanoparticles has been analyzed by DLS and TEM analysis, the results showed that the average diameter of the nanoparticles is from 10 to 30 nm which defers for different oxide nanoparticles. The general method for calculating the optimum span of the Isotropic Gaussian function with special algorithm for learning RBF networks, has been presented. This study's results declared that the RBF artificial neural networks, because of having strong academic basis and having the ability to filter the noises, has a good performance. With increase in temperature, the ratio of the viscosity of the nanofluids decreases compering to the viscosity of the basefluid. Also with increase in nanoparticles mass fraction the related viscosity increases boldly. For temperatures higher than 50°C, the related viscosity is less than the viscosity of the basefluid.

Volume 2, Issue 2 (9-2018)
Abstract

In recent years, with the advancement of nanoscience, many scientists have used nano materials to solve existing problems in various sectors of oil industry. Nanofluids made with these materials can facilitate the separation of oil and gas in a reservoir and increase oil recovery factor compared to current methods. Therefore, in this work, the effect of clay nanoparticles on oil recovery factor was investigated. For this purpose, two different base fluids, water and ethanol, were used to disperse the nanoparticles. The effect of adding clay nanoparticles on viscosity changes and interfacial surface tension was determined. Also, in order to investigate the effect of nanoparticle concentration in the base fluid on the ultimate oil recovery factor, nanofluids with 3 and 5 wt% were prepared. Results show that oil recovery factor increases significantly in these conditions by adding them into the base fluid, though nanofluids included clay nanoparticles have less stability. Also, the effect of these nanoparticles dispersed in water is greater than in ethanol. For example, at 5 wt%, oil recovery factor for water based nanofluid was 49.7% and for ethanol based nanofluid was 46%.

Volume 2, Issue 2 (9-2018)
Abstract

In this study, the effects of drying temperature and mechanical pressure on the surface structure and dynamical properties of polyaniline (PAni) were studied. PAni was synthesized through the aniline polymerization process in the presence of ammonium persulfate in acidic medium and normal methyl-2-pyrrolidine solution. The obtained solution was dipped on a substrate of quartz glass. Atomic force microscopy (AFM) analysis based on nano-indentation tests were used to determine the values of hardness, Young’s modulus and Poisson’s ratio of the films. The results of the analysis of the scanning electron microscope demonstrated that the surface morphology of the film is changed from a fiber-to-interconnected cross-linked networkby increasing the drying temperature. The transmission electron microscope analysis showed that the diameter of the fibers on the surfaces dried at 318 K and 418 K was 18 and 30 nm, respectively. AFM results showed that the mean surface roughness of PAni film at 318 K without mechanical pressure was 63 nm, while for the film pressed at 5 MPa was less than 35 nm. Thermo-mechanical analysis showed that the glass transition temperature of the PAni film prepared without mechanical pressure and the film pressed at 5 MPa were 386 K and 378 K, respectively. Investigating the temperature dependence and applied pressure on the film surface in determining the viscoelastic properties of the PAni nanostructured film can provide readers with appropriate information about the storage and loss modulus of the film and the activation energy of the polymer layer during the thermal decomposition process.



Volume 2, Issue 2 (9-2018)
Abstract

Fiber production in nanoscale prepares high surface contact for fibers and leads to the improvement of their properties with respect to other fibers. A convenient and effective method for nanofiber production with different diameters is electrospinning. Various effective parameters on electrospinning processes, including environmental, equipment, and solution variables can produce fibers with different morphologies. PVA has been used in various fields of applied research because of its high thermal stability, biocompatibility, non-toxic and solubility in water. The published reports indicated that properties of the PVA are improved with the addition of bentonite. In this research, to prepare PVA/nano-bentonite nanofiber membrane, the optimum amounts of three effective variables on the above-mentioned processes were determined. According to the obtained results, the voltage of 11 kV, the feeding rate of 0.5 mL/h and bentonite concentration of 3% w/w were optimum conditions for the process of PVA/nano-bentonite nanofiber composite production. In this condition, the average diameter of produced nanofibers was 243 nm with the standard deviation of 0.0551 and the tensile strength of 7.64 MPa. The results showed that the addition of bentonite to PVA increase intensity of nanofibers and decrease the diameter of nanofibers from 308 nm to 243nm.Therfore, the produced PVA/bentonite nanofiber composite is a good membrane for water treatment.

Volume 2, Issue 2 (9-2018)
Abstract

Methyl Tert-butyl Ether(MTBE) has been used as a booster in gasoline octane numbers in many countries, but after a short time due to the high absorption in water and the possibility of entry into groundwater, its use in developed countries is prohibited. In this work, for the first time, to reduce the adverse environmental effects, MTBE was encapsulated, and release control was considered. For this purpose, the inverse mini-emulsion polymerization of monomer methylmethacrylate(MMA) was performed in the presence of MTBE and in the cyclohexane medium by oil/water/oil. Poly methyl methacrylate/MTBE nanocapsules were synthesized in 0.5, 1, 2 ratios of MTBE to methyl methacrylate (R = MTBE / MMA).
The effect of changing R values ​​on conversion polymerization, on encapsulation efficiency of MTBE and on the morphology of capsules was investigated. For this purpose, TGA and TEM were used. Changing the R ratio from 0.5 to 2 allowed the capsule to be controlled in the range of 50-500 nm. The start of the MTBE degradation range of 130 ° C increased to 250 ° C due to the presence of the MTBE inside the capsule, and it was possible to start controlling the release of the nucleus by heating and starting at a temperature of 250 ° C. By addition of 1.5% of the capsules to the gasoline, the octane number increased by 5 units.
According to the results inverse mini-emulsion polymerization is a suitable method for encapsulating and reducing the environmental effects of MTBE by limiting its contact with the environment.
 

Page 1 from 36    
First
Previous
1
...