Showing 20 results for Nonlinear Dynamic Analysis
Volume 10, Issue 3 (12-2010)
Abstract
Abstract
Studying the response details of steel moment connections is very important due to the role of
connections in moment resisting frames. The aims of this research were: i) to study the damage indices
of steel material including: Pressure Index, Mises Index, Equivalent Plastic Strain Index, Triaxiality
Index, and Rupture Index and ii) to compare these indices at connections of steel moment frames
under earthquake loads. To achieve this, time history nonlinear dynamic analysis is performed using
selected earthquake records on 2D model of special steel frame with ten storey and one bay to
determine maximum rotations of connections. Then, damages indices of the selected connections
under maximum rotation of records are investigated with selecting two types of moment connections.
The results indicate that damage indices are dependent on type of connection, location of surveying,
and rotations caused by earthquake movements. This dependency is very considerable for Equivalent
Plastic Strain Index and Ruptureindices
Volume 13, Issue 3 (10-2013)
Abstract
One of the problems that influence on seismic behavior of structures and associate designing to itself is the grouping of structural element within analyzing and design of structures. Generally this grouping is due to facilitate of performing the structures. This paper investigates these grouping effects on behavior of concrete structures with RC bending frame systems andmoderate ductility scale. Study cases that is used for assessment of these grouping effect contains buildings with 4, 8 and 12 story RC structures. Each of these buildings designed one time without grouping and several times with grouping consideration about columns of structures in the height direction of buildings.Codes that are used for design purposes are Iranian Seismic code and RC structure design code. IDARC program V7.0 is utilized for estimation of damage indices, maximum story drifts or displacements and energy dissipated by building structural systems to comparing thenonlinear seismic behavior of column grouped and non-grouped structures. Damage indices calculated by this program is based on modified Park-Ang-Wen model and represented individually by elements, stories and a total damage index. The selected structures are analyzed with nonlinear dynamic analyzing method under Tabas earthquake record using several peak ground accelerations (0.35g, 0.50g, 0.75g and 0.90g) and pushover analysis with force-control and displacement-control methods. Maximum responses such as maximum displacements, damage indices(with grouping and non-grouping design method) were used to realization result of this designing method.Comparing the result of nonlinear analysis showed increasing of damage with increasing of PGA. This is due to a better distribution of forces in the elements of structures in case of non-grouped designed structures. Analytical results showed that the effect of grouping in PGA less than 0.5g is not sensible, but in larger PGA the grouped designed structures suffer more damages. The grouping of structural elements causes to concentration of energy in elements that their demand to capacity ratio (DE/CE) is greater than others.This causes that these elements embroil more damage and save other element from greater damage.One of the other results of this designing method (Grouping of element) is formation of soft stories in the structure. Also the reason of this behavior is due to lumping of hysteretic energy on these stories. This subject causes to generate soft and weak story in the structure and increase the overall damage indices.Furthermore result of pushover analysis showed that grouped element structures have a more stiffness and so in a weak earthquake (a low PGA) have a less or equal damage index in comparison to non-grouped element structures. As an overall result determined when DE/CE for all elements is close to each other distribution of damage is uniform and vice versa.
Volume 13, Issue 5 (12-2013)
Abstract
In this paper the behavior of framee, the process of plastic hinge formation and energy absorption of frames with two spans and one floor with three types of slab including bubble deck slab, hollow core slab and reinforced slab under three earthquake accelerations have been analyzed and compared. The results show that bubble deck slab and hollow core slab as rigid as normal reinforced slab, although bubble deck slab has higher strength and stiffness compared to other slabs. Partnering slab in analysis make period of slab reduce more over bubble deck slab and hollow core to the comparison of reinforced slab, have more effect on period reduction. Ultimate displacement of frame with reinforced slab reach to failure mechanism is more than two mentioned case, however frame with bubble deck slab reach to failure mechanism under stronger earthquake acceleration and smaller displacement than reinforced slab. Comparison base shear of three discussed case shows that maximum base shear is in bubble deck slab and minimum base shear is in normal reinforced slab. Formation of plastic hinge in frame with bubble deck slab is similar with that in frame with hollow core slab with the difference that plastic hinge in former occurs later at the top end of the middle column and two ends of middle beams. In fact, formation of plastic hinges in this frame requires higher acceleration because of the higher amount of concrete and stiffness. In all samples, plastic hinge first occur in the frame and then yielding lines occur in the tensile region of the slabs. The failure mechanism of slab and steel frame occur at the same time in frame with hollow core slab and reinforced slab; however, this is not the case in the frame with bubble deck slab and even though with occurring of yielding lines, the slab does not fail. The stress distribution due to gravity loads is symmetric across all the slabs; however, the increase rate of stress is different. This difference is particularly notable in seismic behavior of slabs in a way that the formation of plastic hinge and yielding lines in hollow core slab, because of the holes, is totally different with that of in reinforced slab. In comparison with other slabs and due to the formation of plastic hinge, reinforced slab absorb lower energy. Columns, beams and connections play different role in energy dissipation. In all frame, the contribution of connections to dissipate energy is minor and this is because yielding does not occur in connections. Contrary to the frame with reinforced slabs, because of yielding in several places of columns, columns dissipate energy more than beams in the frames with hollow core slabs. It was concluded that hollow core slab and bubble deck slab have maximum and minimum contributions to the energy dissipation, respectively.
Volume 14, Issue 1 (6-2014)
Abstract
Currently, seismic design provisions of most building codes are based on strength or force (base shear) considerations. These building codes are generally regarding the seismic effects as equivalent static forces with a height wise distribution which is consistent with the first vibration mode shape. However, the design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of steel moment resisting frames (SMRF), based on the concept of uniform deformation theory. This theory is based on this concept that the structural weight of a lateral load resisting system with uniformly distributed ductility demand-to-capacity ratio (or any other damage index) will be minimal compared to the weight of an ordinary designed system in which deformation is not distributed uniformly and just some of structural elements have reached their ultimate states. The state of uniform deformation can be achieved by gradually shifting inefficient material from strong parts of the structure to the weak areas. In the first part of this paper, the uniform deformation theory is implemented on 3, 5 and 10 story moment resisting frames subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. This includes design of an initial structure according to conventional elastic design procedures, followed by an iterative assessment process using nonlinear dynamic analyses till the state of uniform deformation is achieved. Results show that the application of uniform deformation theory leads to a structure with a rather uniform inter-story drift distribution. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared to four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures. Also, as the shear strength of each story is in proportion to the weight of that story, the optimized structures have minimum structural weight. For further investigation, the 10 story SMRF is redesigned using four existing load patterns and subjected to 12 earthquake excitations. Then a comparison is made between maximum beam rotations of each model and those belonging to the optimized one which revealed that the optimized SMRF behaves generally better than those designed by other loading patterns. Also, it is found that for none of the conventionally designed SMRFs, beam rotation demand is distributed uniformly. In other words, for all of the considered load patterns the maximum rotation of the beams in some stories exceeds the rotation associated with the performance level. Finally, assuming that the probability distribution of maximum rotations under different excitations follows a lognormal distribution, the probability of exceeding the allowable rotation associated with the LS performance level is calculated for different load patterns and compared to each other. Based on this comparison, the efficiency of each loading pattern is evaluated and the best one is determined. Application of optimization method presented in this paper avoids the concentration of deformation and damage in just one story and makes each story deformation and damage uniform over the height of the structure.
Volume 14, Issue 2 (7-2014)
Abstract
Dams shall safely retain the reservoir and any stored solids, and pass environmentally acceptable flows, as required for all loading conditions, ranging from normal to extreme loads, commensurate with the consequences of failure. The new trend for performance-based design is to consider 2 levels of seismic actions and analyze the situation where the limit of force balance is exceeded for high intensity ground motions, associated with a very rare seismic event. For the design, two basic requirements are defined: (i) Non-collapse requirement (ultimate limit states), i.e. after the occurrence of the seismic event, the structure shall retain its structural integrity, with respect to both vertical and horizontal loads, and adequate residual resistance, although in some parts considerable damage may occur, (ii) Minimization of damage (serviceability limit state) , i.e. after seismic actions with high probability of occurrence, during the design life of the structure, some parts can undergo minor damage without the need of immediate repair. This study evaluates the behavior of a typical earth dam by nonlinear seismic analyses, in two performance levels, named “Base Performance Level” and “Desired Performance Level.” The level of seismic action and related acceptance level of damage are defined for each performance level. In “Base Performance Level,” with seismic levels of OBE (0.3g) and MDE (0.5g), the structure shall be serviceable and repairable and in “Desired Performance Level”, with seismic levels of MDE (0.5g) and MCE (0.7g), the structure shall be serviceable and repairable, respectively. Also, the stability of dam has been assessed by the “Strength Reduction Analysis.” The analyses are nonlinear and the constitutive law of the materials was assumed to follow "Finn" and "Mohr-Coulomb" models, incorporated into “FLAC 2D” finite difference analysis program. The factors such as initial shear modulus, variation of shear modulus versus shear strain, generation and dissipation of pore pressure and hysteretic damping are considered in this study. In addition, using the scaling method of applying maximum acceleration, the response of dam is investigated in different maximum accelerations. The results show that the dam needs to be changed in geometrical specifications or seismically improved in “Desired Performance Level”, in contrast with “Base Performance Level.” Results are confirmed by low amount of safety factors of stability in dam, which are calculated for different seismic loads. Also, the behavior of dam is examined by sensitivity analysis for type of accelerograms, constitutive model and the standard penetration number in shell of dam. Two accelerograms, including “Friulli” and “Sakaria” are considered. Maximum acceleration and duration of both of them are equalized and frequencies more than 5Hz are filtered. Sensitivity analyses of “Friulli” and “Sakaria” accelerograms, despite the difference in response spectra and specific energy density, show approximately similar results. “Finn” model predicts the amount of excess pore water pressure to be more than "Mohr- Coulomb" up to %20, and shows the occurring of liquefaction in SPT more than 35 and acceleration more than 0.7g, in shell of upstream of dam
Volume 14, Issue 2 (7-2014)
Abstract
Concrete buttress dams are constructed in large numbers at medium sites in many countries such as Iran because of their considerable technical and economical benefits in previous century. This type of dams is exposed to damages due to earthquakes as other structures. Some buttress dams such as Sefidroud dam in Iran, Hsinfengkiang dam in China and Honenike dam in Japan have undergone some damages due to recent earthquakes. After these incidents, some investigations have been carried out. However, these investigations have just mentioned the manner of incidents and the resulting damages. Therefore, the seismic behavior and sensitivity recognition of these dams with respect to different factors have been ignored; however the study of behavior and seismic sensitivity of this type of dams is important. In this paper, the tallest monolith of the Sefidroud concrete buttress dam is analyzed using a 3D model with massless foundation to study the seismic behavior and sensitivity of this type of dam. The interaction of the dam with the reservoir, the reservoir bottom absorption and upstream radiation of hydrodynamic waves are considered, but the cross-canyon component of earthquake is neglected. The applied accelerograms to the system are scaled according to the Sefidroud dam site DBE response spectrum. To determine the initial conditions before occurring earthquake, a series of detailed static analyses are done under the effect of dam body weight, hydrostatic pressure, uplift pressure and ambient temperature. Seismic loading due to longitudinal and vertical components of earthquake is applied and the nonlinear behavior of dam under various factors such as different seismic loading scenarios and different properties of dam body and also foundation materials is investigated. The results of analyses show that the dam body downstream kink, heel, toe and buttress web are sensitive and vulnerable zones. The results also demonstrate that the compressive stresses in the dam body are usually much less than the compressive strength of concrete. Therefore, the possibility of compressive failure is almost zero. But the conditions of tensile and shear stresses are different and large stresses may occur at the mentioned zones and considerable tensile and shear damages to the dam body are possible. According to the results of analyses, it is apparent that when the ratio of dam body modulus to that of the foundation (called softness modulus) is small, i.e. when the foundation modulus is high and near to that of dam body, the construction of concrete buttress dams at highly seismic zones may cause local failure and unfavorable situations for the tensile stresses at the kink, the heel and the toe of the dam body. Therefore, adaptation of this dam type in such sites should be carefully studied and in these circumstances, the modulus of the concrete of dam body should be kept more than usual practice. Furthermore, the shear damage at the dam-foundation contact surface is highly dependent to the applied earthquake type, but increasing the softness modulus could reduce this type of damage. The compressive strength of concrete has no effect on the shear damage at the dam-foundation contact surface.
Shirko Faroghi, Mahdi Bamdad,
Volume 14, Issue 14 (3-2015)
Abstract
In this paper, a new formulation is developed for nonlinear dynamic analysis of 2-D truss structures. This formulation is based on dynamics of co-rotational 2-D truss. The idea of co-rotational approach is to separate rigid body motions from pure deformations at the local element level. Using this approach, internal force vector and tangent stiffness matrix, inertia force vector and the tangent dynamic matrix are derived. Furthermore, the inertia force vector, tangent dynamic matrix, mass matrix and gyroscopic matrix are directly derived from the derivation of current orientation matrix with respect to global displacements or orientation matrixes. Using this new formulation, nonlinear response of any 2-D truss structures can be examined. Here, for example the response of tensegrity structures under dynamic loads are investigated. Tensegrity structures are a class of structural system composed of cable (in tension) and strut (in compression) components with reticulated connections, and assembled in a self-balanced fashion. These structures have nonlinear behaviour due to pre-stress forces. And their integrity is based on a balance between compression and tension. Two numerical examples are presented to illustrate the new formulation and results show that the new formulation has more convergence rate than the existing models.
Asghar Dashti Rahmatabadi, Mahdi Zaree Mehrjardi, Reza Rashidi Meybodi,
Volume 15, Issue 5 (7-2015)
Abstract
In this work, using finite element method (FEM) the effects of preload factor on the dynamic stability of noncircular two lobe hydrodynamic micropolar lubricated journal bearing based on the linear and nonlinear analytical dynamic models are presented. Assuming that the rotor is solid, the governing Reynolds equations for incompressible lubrication of journal bearing have been modified using micropolar theory. Later, the linear and nonlinear dynamic models, including a certain harmonic disturbances and time dependent trajectory of rotor center are applied to obtain the stability performance of bearing. The 4th order Rung-Kutta method has been used to solve the time dependent equations of rotor motion. Finally, the numerical results for the critical mass parameter and whirl frequency ratio of rotor as the stability characteristics of bearing are evaluated for different values of preload factor and compared together. Results show that the stability performance of two lobe bearing enhances by increasing the amount of bearing noncircularity in terms of the critical mass parameter increase and decrease of the whirl frequency ratio. Also, by comparing two dynamic analysis methods, it is obvious that the results of linear dynamic model are more cautious in different investigated cases. The results of nonlinear dynamic analysis reveal that by increasing the value of preload factor the dynamic response of rotor center involves return to steady state equilibrium position, limit cycle periodic motions and contact between rotor and bearing's shell.
Volume 16, Issue 4 (1-2016)
Abstract
In this research, seismic performance of Endurance Time (ET) method is considered for assessment of jacket platforms. ET is a new method that can assess the extreme response of the structure at various seismic excitation levels with very low computational costs. For this aim, artificial records have been generated that gradually increase with time. They have been named Endurance Time Acceleration Functions (ETAFs). For determination of the seismic response of the jacket platforms, various nonlinearity such as buckling of the brace members, material nonlinearity, soil structure interaction and fluid structure interaction are important and can be a challenging issue for the ET approach. In this way, a real jacket platform located in the Persian Gulf is studied. Finite element method is utilized to prepare a three dimensional model of this platform with using ANSYS software. Moreover, various nonlinearity sources are considered in this model. Fluid structure interaction is included by using Morison equation that hydrodynamic added damping and added mass are considered by nonlinear drag force and inertia force, respectively. Soil–pile–structure interaction is also considered by near and far field soil effects. Near field soil is modeled by nonlinear spring and elastic solid elements are used to model far field effects. Material nonlinearity is considered by a standard bilinear stress-strain curve with 5% strain hardening and the von Mises yield criterion. Buckling of the brace members is also modeled by the initial imperfections at the mid-span of the braces, as recommended by previous studies. A methodology is also addressed for assessment of this type of offshore structures. For considering the accuracy and the reliability of this approach, the results of the ET method are compared with the typical time history method. In this regard, seven records are selected for soil type C from FEMA 440 and FEMA 695 and scaled to the ELE event such that their spectral accelerations match the ELE spectral acceleration at the main period of the platform. For other excitation levels, scale factors change proportional to the ELE ratio. For example, in this case, the ratio of the ALE spectral acceleration to the ELE one is 1.4; therefore, the scale factors of the ALE event are 1.4 times of the ELE one. ET records are scaled such that the response acceleration spectrum of the ETAF until target time becomes compatible with the ELE spectral acceleration. Initial studies recommend that 10 s is an appropriate target time. Due to linear increase of the excitation of the ET records, each time can be in accordance with the especial level of ELE, for example, 5s and 15s indicate 0.5 and 1.5 times of the ELE event. A comparison between the results of the earthquake records and the results of the ETAFs show that the ET method can accurately estimate engineering demand parameters such as maximum deck displacement, maximum base shear, maximum axial force in the leg and maximum axial force in the brace. The ET method is a vigorous approach that can be successfully estimated the seismic excitation of the buckling initiation. Moreover, the results indicate that despite significant decrease in the computational costs of the ET method, this approach can show appropriate performance.
Volume 16, Issue 4 (1-2016)
Abstract
Terrorist attacks and explosions in the vicinity of buildings and vital areas are happening in different countries repetitively. Most of these incidents lead to global and local failure in the main elements of the buildings and in some cases due to intensity of explosions can occur entire structure collapses. Columns are the key bearing elements in the building, and between all columns, the exterior of them are more vulnerable to terrorist attacks. Usually blast resistant design of structure is carried out by simplifying the models and considering a single column with nonlinear behavior under blast loading. Explosion is a complex phenomenon with high strain rate, which affects strongly on behavior and material property of structural elements. Operation of experimental test on structures under blast load is very expensive, difficult and dangerous. Hence, simulation of experimental models using nonlinear finite element software is very useful. In this paper, to achieve better performance of columns under blast loading, the response of steel columns with different cross-sections has been investigated. In addition, effects of blast wave incidence angle, blast distance and different boundary conditions are considered. For this purpose, wide flange steel column of experimental test has been simulated under axial force and blast load using LS-DYNA software. Numerical model is simulated using shell elements and its result has been validated with the full scale blast experimental data. In the finite element analysis the effects of high strain rate and material nonlinearity are considered. The columns with different cross sections of wide flange, cross-IPE and box sections are simulated under two angles of blast waves extensive, zero and 45 degree. Also, two support conditions of fixed-fixed end and pinned-pinned end have been considered. The results show in the both boundary conditions for blast with zero angle, the dynamic response of column with wide flange section subject to blast load has been less than the other cross sections. Also, the box section has better performance than cross-IPE. In 45 degree blast angle and fixed end boundary conditions, the displacement time history of box column is less than two other sections and it shows better performance respect to other sections. But, under pined end boundary conditions, cross-IPE section has better and stronger behavior respect to wide flange and box sections. In addition, the displacement of wide flange section (section with non-identical strong axes) in 45 degree blast angle has more than zero degree. However, in the columns of box and cross-IPE section under the same explosion situation in 45 degree blast angle, the dynamic response is less than zero degree, because they have two identical strong axes. Then for corner columns of buildings that direction of blast wave propagation may be 45 degree the best section (based on minimum deflection criteria) is column section with two strong axes such as box and cross-IPE, however for peripheral middle column of building that bending moment of explosion may be accrued about strong axis, the wide flange section with only one strong axis is better. Various distances of explosion from column cause different nonlinear behavior, therefore investigation of optimum column cross section under blast loading depends to distance of explosion from the column. Then displacement criteria may be not enough and use of additional criteria such as residual load bearing capacity can be appropriate.
Volume 17, Issue 4 (11-2017)
Abstract
When one or more vertical elements of a structure fail due to defects in construction stages or over loading or etc., load distribution path of the structure changes and local failure arises in the damaged area. This kind of damage is not considered by engineers and can cause local collapse. The local collapse can spread vertically or horizontally to the other areas of the building if no alternate path exists to redistribute the loads. Therefore, limiting the local collapse in the damaged area is major idea to mitigate progressive collapse in the buildings.
Nowadays, analyzing the structures which are designed based on the current standards, against progressive collapse and offering ways to improve and strengthen them is leading to part of the designing stages of the special buildings. Thus, some standards and codes in this field are being produced or updated. The most common method to analyze the structure against progressive collapse is the alternate path method. In this direct design method, the critical columns be removed immediately and stability of the remaining structure is investigated. But there is no references talk about the effect of lateral resistant of the infill panels. This is one of the simplifier assumptions which are used in numerical studies of progressive collapse phenomenon in structures indicate inconsistency between the numerical and experimental full-scale results. Unlike numerical studies, experimental studies showed that the structure remain stable even if more than one column removed.
As a case study, in this research, a steel structure with 8 stories with moment resistant frame is analyzes and designed considering effect of unreinforced masonry infill panels (URM). URM infill panels in full contact with the frame elements on all four sides shall be considered as primary elements of a lateral force-resisting system. Recognizing this behavior, the stiffness contribution of the infill is represented with an equivalent compression strut connecting windward upper and leeward lower corners of the infilled frames. So, analytical macro-model based on the equivalent strut approach is used to simulate the effective infill panels. Potential of progressive collapse of the one of the peripheral frames is evaluated with the Opensees program based on the nonlinear dynamic analysis. Researchers found that linear static analysis might result in non-conservative results since it cannot reflect the dynamic effect caused by sudden removal of columns. So, time-history analysis should be applied to seek dynamical response of the structure.
Results indicate that considering effect of the infill panels increase axial force of the columns and decrease bending moment of the beams and nodes displacements. So results are closer to the experimental studies and prove stability of the structure after column removal and increase resistant of the building against progressive collapse.
As it distinct, modeling the infill panels in the analysis is complex and time-consuming, so in this research, the coefficients are proposed to apply to the load combinations instead of modeling the infill panels in order to closer the results together. The proposed coefficients are larger than one for columns forces and smaller than one for the beams forces.
Volume 17, Issue 5 (12-2017)
Abstract
In seismic active zones, large mainshocks usually follow by numerous aftershocks. Because of the short time intervals between consecutive shocks, additional damage due to the accumulation of inelastic deformations from all sequences is increased and the structures that has been already damaged by the preceding shock collapse before any repair is possible. Moreover, despite the importance of seismic sequence phenomena on increased damage and the evidence of structural damage caused by the recent multiple earthquakes such as Nepal and Hindu-Kush (2015), most structures are designed according to the modern seismic codes which only apply a single earthquake on the structure in the analysis and design process. In this case, the structure may sustain damage in the event of the "Design earthquake", and this single seismic design philosophy does not take the effect of strong successive shocks on the accumulated damage of structures into account. For this reason, the effect of various parameters such as Peak Ground Acceleration, Magnitude, Shear Velocity Wave, Effective Peak Acceleration, Peak Ground Velocity, Epicentral distance, the time gap between first and second earthquakes, Period of reinforced concrete frames and etc, is examined on the damage of reinforced concrete frames under single and consecutive earthquakes. At first, six concrete moment resisting frames with 3, 5, 7, 10, 12 and 15 stories, are designed according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (i.e. Standard No. 2800 guideline) and analyzed under three different databases with/without seismic sequences phenomena. For each database, single and consecutive earthquakes are selected according to Peak Ground Acceleration (PGA), Effective Peak Acceleration (EPA) and Peak Ground Velocity (PGV) criteria from Pacific Earthquake Engineering Research (PEER) and United States Geological Survey’s Earthquake Hazards (USGS) centers. At next step, in order to train the multilayer artificial neural networks with back-propagation learning algorithm, period of reinforced concrete fames (T) and some of earthquake features including PGA, PGV, EPA, magnitude (M), shear wave velocity in the station (Vs), epicentral distance (Epc) and time gap between consecutive earthquakes (Tg) as artificial neural network inputs and Park-Ang (1985) damage index - as the results of nonlinear dynamic analysis in OpenSees software and neural network target – are selected. For each database, 400 neural networks are designed with a different number of neurons in each hidden layer from 1 to 20 and ideal neural network is determined with the least value of Mean Square Error (MSE) and maximum value of regression (R) among all networks. Then, for considering the effect of input parameters on structural damage (Park – Ang 1985) caused by single and consecutive seismic scenario, the range and reference values for each group of input parameters – single and consecutive cases in each database – are chosen to be close to the median values and introduce to ideal neural networks and damage indexes are determined. The results show that structural damage caused by with/without seismic sequence scenario is more sensitive than other parameters to Magnitude and Acceleration for single earthquakes and the ratio of these parameters in the second shake to first for consecutive shocks.
Volume 18, Issue 1 (5-2018)
Abstract
Dams are one of the most important structures which are built to prepare water for different usages such as drinking, agriculture, industrial, flood control and hydro power generation. Due to the importance of dams and increasing number of terrorist attack, Stability of dam structures against blast loading is important. Dam responses depend on magnitude of released energy and if the dam structure could not be able to resist and maintain its stability against this energy, irreparable consequences will happen. Explosion is a sudden release of energy which could be like gases combustion, nuclear explosion or any kind of bombs. TNT unit usually used as reference to determine the explosion power. Some of basic properties of an explosion are random location of explosion, transient loading and short time loading (up to few seconds). When blast loading happened, energy will released suddenly and this released energy include thermal radiation and wave scattering in air and earth. The waves which scattered in the air are the main factor to structural damage. These waves move faster than sound wave velocity and impact the structure. Due to reflex from structure surface, the pressure of these waves increased and also some air waves penetrate to structural elements from openings such as doors and windows. This process continues until all available parts of the structure affected by pressure waves. In this research, the effects of blast loading on Karun 4 dam are investigated. To this purpose, dynamic analysis of dam-reservoir-foundation system is performed by finite element model using ABAQUS software. Dam-reservoir-foundation modeled three dimensional in which reservoir length is three times greater than dam height. The foundation modeled as a hemi-sphere with a radius of three times greater than dam height. Non-linear material behavior also considered by using concrete damage plasticity method. The CONWEP theory is used to model blast loading. To verify the blast modeling theory and software abilities, a steel plate which investigated under blast loading in references has been modeled and the results shows same responses with the paper. The responses of dam are investigated under two different reservoir conditions include full and empty conditions. Analysis also done for three different explosion points in three different elevations. Explosion points are near base, mid height of dam and near dam crest respectively. All these points have 10 m distance from dam structure. TNT mass used in each noticed conditions, is the minimum amount of TNT which cause damage in dam body. The results indicate that the responses of the dam is very sensitive to mesh dimensions. The results also show, water level has not great effect on explosive mass which is needed for structural damage of the dam. In both full and empty reservoir conditions, when explosion happened near the dam crest, the displacement is more than other cases. It is noteworthy that when the explosion happened near the crest, the maximum displacement of the crest and the point in front of the explosion point, occur in same time but when the explosion point is in middle and also near the base, theses displacements are not in same time.
Volume 18, Issue 4 (11-2018)
Abstract
Time history analysis, which is the most important analysis tool in performance-based seismic design, has become more and more popular worldwide. In the seismic design, seismic demand is mainly governed by three factors including the peak value of ground motion, the characteristic of earthquake spectrum and duration. An earthquake intensity index of ground motions is normally used as a scaling parameter that is critical for seismic analysis and design. A number of researchers have, from their own perspective, proposed various intensity indices. However, due to the complexity and randomness of earthquake motion, it has been a difficult task to accurately evaluate the applicability of various existing intensity indices. In addition, an objective and quantitative method is lacking in the evaluation of the applicability of such indices. This has been a challenging issue in seismic engineering research and has become a fundamental problem in performance-based seismic design. Nonlinear structural response is often highly sensitive to the scaling of input ground motions. Thus, many different ground motion scaling methods have been proposed. The “severity” of an earthquake ground motion is often quantified by an intensity measure, IM, such as peak ground acceleration, PGA, or spectral acceleration at a given period. The PGA of a record was a commonly used IM in the past. More recently, spectral response values such as spectral acceleration at the fundamental period of vibration have been used as IM. Scaling of ground motions to a given spectral level at the fundamental period of vibration significantly decreases the variability in the maximum demand observed in the structural system. However, it is widely known that for records with the same spectral acceleration at the fundamental period of vibration value, spectral shape will affect the response of multi-degree of- freedom and nonlinear structures, because spectral values at other periods affect the response of higher modes of the structure as well as nonlinear response when the structure’s effective period has lengthened. Similar attention to the influence of nonlinear behavior of a structure on the period of vibration led to an IM that accounts for period softening to reduce variability at high levels of maximum inter-story drift ratio, drift demands larger than 5%, for composite structures. Previous studies have focused on evaluation of different ground motion scaling methods in single-degree-of freedom and buildings of multi-degree-of-freedom with shear-type behavior or common steel-moment frame structures. However, over the last decade, the performance-based seismic design philosophy has emerged as a promising and efficient seismic design approach. The novel Performance-based plastic design (PBPD) approach explicitly accounts for the inelastic behavior of a structural system in the design process itself. PBSD approaches based on plastic analysis and design concepts were recently developed for different lateral load resisting systems such as steel moment resisting frames, steel braced frames, etc. In these design methods a pre-selected yield/failure mechanism and a uniform target drift (based on inelastic behavior) were considered as performance objectives. The analytical validation of these methods showed that structures designed using these methods were very effective in achieving the pre-selected performance objectives. Considering a gradual shift towards PBSD for seismic design methods in general, this study is aimed at examining the effects of six different IMs on the estimation and distribution of the maximum inter-story drift for three short, moderate, and long-period steel-moment resisting frames designed with PBPD method buildings using the concepts of efficiency and sufficiency. An ensemble of 42 far-filed earthquake ground motion without pulse characteristics were used and scaled based on two target spectrum MCE and Design Response Spectrum to conduct nonlinear dynamics analyses by using OPENSEES. Results indicate that, the cod-compliant scaling method was not reliable for nonlinear dynamic analyses of structures designed by PBPD method, and cloud be very sensitive to the ground motion characteristics. Among them, depending on the number of stories, the three scaling methods including scaling ground motions to a given PGA and those that take into account for periods of higher modes generally decrease the variability in the maximum demand observed in the structural systems.
Volume 19, Issue 1 (5-2019)
Abstract
Earthquake sequences occur at many regions around the world where complex fault systems exist. These fault systems usually do not relieve all accumulated strains at once when the first rupture takes place. Therefore, high stresses formed at different locations causing sequential ruptures until the fault system is completely stabilized. The sequential ruptures along the fault segment(s) lead to multiple earthquakes which are often hard to distinguish them as fore, main and after-shocks, or a sequence of earthquakes from proximate fault segments. The most recent one sequences occurred are two foreshocks of magnitude 6.2 and 6 followed by a magnitude 7 main shock between 14 and 15 April 2016 caused severe damage and injuries. The event of two earthquakes by magnitude 2.6 and 6, which rocked the cities of Ahar, Varzaghan and Harris in East Azerbaijan in Iran in August 2012, is also a seismic sequence. Field investigations reported failure of structural systems under earthquake sequences, especially where structural retrofitting was not provided due to the short time between the earthquake sequences. In most failure cases the reported damage is mainly due to loss of stiffness and strength of structural elements as a result of material deterioration under earthquake sequences loadings. Buildings may have different configurations depending on the construction location and have different plan dimensions that would lead to irregularity in their planning. Limited research has addressed the seismic behavior of structures subjected to earthquake sequences especially irregular structures. This study investigates the effect of earthquake aftershocks on the steel buildings with irregularity in plan. For this purpose, we studied on structures of 8, 12 and 20 number of stories with special steel frame system under the earthquake sequences. Each of these structures consists of three cases: regular, irregular 1, and irregular 2 models that were designed in accordance to Iranian codes by SAP 2000 software. Geometric irregularities in the plan of the structure created in accordance to Iran's seismic code, a recess should be created in proportion to more than 2% of the total length of the building. In this paper, first irregularity has a recess by 5 meters (one span) and the second irregularity with a recess by 10 meters (two spans), which is 25% and 50% of the length of the building, respectively. The spectral dynamical analysis method has been used to design the structures. For nonlinear analysis, we use Perform-3D software, In Perform-3D, a frame element is used to model beams and columns. Then these structures were evaluated by nonlinear dynamic analysis under actual earthquake sequences. Six sequential earthquake categories that have a major earthquake spacing with corresponding aftershock occurred in less than a week in the area were selected from the PEER (Earthquake Strength Database). Finally, after discussion on parameters such as roof displacement, residual inter story drift and maximum inter story drift, it is observed that aftershock leads to increasing the response of the structures and as a result failure under aftershock. By increasing the irregularity in the plan, the instability of the structure increases under aftershock, which may cause structural failure.
Volume 22, Issue 2 (6-2022)
Abstract
In recent years, the use of supplemental damping devices to increase the capacity of structures against progressive failure due to explosion has received less attention. The main purpose of this research is to investigate the effect of using Triangular yielding metal damper called TADAS. in order to increase the capacity of an irregular three and nine-story steel moment frame buildings against pulse like seismic excitations and progressive collapse effect. For this purpose, seismic performance level of this structure has been evaluated and rehabilitated by TADAS damper. The seismic performance level of damper-equipped building was evaluated by nonlinear static analysis (pushover) and also nonlinear time history analysis under various pulse-like ground motions. In order to assess the performance of TADAS damper under progressive collapse phenomenon, 12 critical columns considering side and corner locations proposed by GSA code were selected to remove. Then considering the seismic nonlinear response of these columns under selected ground motions, four critical scenarios were selected for each building. According to irregularity of the structural plan the capacity of the rehabilitated structure was evaluated using nonlinear time history analysis. To simulate the progressive collapse phenomenon at first the internal column forces are evaluated before it is removed. These forces are dynamically applied to the structure as a nodal point load in addition to existed dead and live loads in five seconds after removing the column. After completing the amount of loading they kept unchanged for two second and finally the nodal point loads would be removed over a fraction of second and therefor the dynamic sudden column removal was simulated. The nonlinear response of the irregular TADAS-equipped building was computed through the step by step numerical integration method known as the Newmark’s β-method integration procedure using SAP2000 software. A fiber element model was employed to take into account the non-linear behavior of columns while for beam elements it is used plastic hinge model considering ASCE41 code. The dampers are also modeled using the link element in the software and the nonlinear plastic Wen model is assigned to simulate the nonlinear behavior of this element . The presented results include comparison of roof displacement diagrams, inter story drift and center mass acceleration for the structure with and without dampers in different failure scenarios. The seismic results show the ability of TADAS damper to improve seismic performance of irregular building. This control system could reduce the inter story drift of buildings at least 40% while the center mass acceleration increase 5.0% While the hysteresis diagram of dampers indicates their ability to suppress the response of this structure. These results indicate the success of the damping system in the simultaneous control of acceleration and displacement and indicate another result of this study. On the other hands the progressive collapse analysis results show the ability of TADAS damper to improve the capacity of the structure against four types of progressive failure scenario especially in scenario 2. The results showed that the vertical displacement was reduced at least 15%.
Volume 22, Issue 2 (6-2022)
Abstract
The conventional bracing frame (CBF) systems show a limited drift capacity before buckling subjected to seismic loads. So, the induced damage in the structure reduces the strength and stiffness. In the last two decades, self-centering (SC) systems have been developed to resolve the deficiencies of the conventional seismic-resistant systems. In SC systems, the structural damage and residual drift are negligible, while they provide sufficient strength and stiffness. In these systems, prestressed elements are used to provide the initial stiffness. On the other hand, the steel plate shear wall, bracing, beam connection to the column provide energy dissipation mechanism. These elements are used as replaceable fuses after sever earthquakes. When the force applied to the structure is greater than the initial prestressing force, the gap created in the structure causes the energy dissipating elements to work. The main feature of SC systems is that they return to zero deformation after each load cycle. So, the post tensioned elements must remain elastic to be able to reduce the residual displacement. This property of the systems represents flag-shaped hysteresis lateral load-deformation curves.
Among the engineering community, three methods of equivalent lateral forces (ELF), dynamic spectral analysis and dynamic time history analysis are commonly used for seismic analysis of structures. The endurance time (ET) method is a new method for seismic analysis and also for performance-based design of structures. In this method, the structure is subjected to special ET accelerations in which the dynamic response of the structure increases with time. The time needed for the structural failure index (such as the maximum drift of stories) to reach a certain level of performance or failure is defined as the structural ET. As a result, a structure that has a longer ET, has better performance against earthquakes.
The main advantages of the ET method include: 1) by providing a suitable estimate of the structural response in each time history analysis, saves a lot of computational time for seismic evaluation, 2) the nonlinear properties of the structures may be considered which can be used for a variety of structures and complex behavior, 3) this method has a simple concept and principles for engineering applications, and 4) this method has a high capability for experimental work with a shake table.
In the current research, the self-centering buckling restraining column braced frame (SC-BRC-BF) system was examined. This system not only increases the drift capacity, it also reduces damage and residual drift in the system. The SC-BRC-BF system consists of two rigid cores connected by buckling resistance columns (BRC) between tha adjacent floors. The BRCs are used as replaceable fuses to dissipate the input energy and to reduce the seismic responses. Vertical post tensioned cable is used to restore the system. For this purpose, a preliminary design approach was introduced for SC-BRC-BF systems with 3, 6 and 9 stories via SAP 2000 software. The simulation of structures under time history analysis and ET method was done via OpenSees software fin a 2D framework. Different seismic responses were investigated including: 1) roof drift, 2) the maximum strain of core elements, 3) drift concentration factor (DCF), and 4) Inter-story drift. The response of structures was examined at both DBE (Design Base Earthquake) and MCE (Maximum Considered Earthquake) levels. Comparing the responses from ET method and the conventional time-history method, the error rate does not exceed 10 and 15 % at the DBE and the MCE levels, respectively. The results obtained from seismic evaluation using the two mentioned approaches, corroborated the high efficiency of ET method with a few number of time history analyzes.
Volume 22, Issue 4 (7-2022)
Abstract
Response modification factors are used to reduce the lateral loads in "force-based design" method. Naturally the calculated lateral displacement (drift) of the structures in the linear static analyses is smaller than actual values. Hence, deflection amplification factor (Cd) is needed to consider a realistic estimation of nonlinear displacements. Most seismic design codes such as ASCE7 and standard No. 2800- 4th version propose this factor for different lateral bearing systems. This paper evaluates the proposed deflection amplification factor for dual system of special reinforced concrete moment-resisting frame with/without shear wall. For this purpose, a set of 2D reinforced concrete frames with 3, 7 and 11 story are designed based on standard No. 2800 (4th version) and implemented in Opensees software in each case without considering the soil- foundation- structure interaction. In this regard, beams and columns are modeled using concentrated plasticity method with “Elastic Beam Column Element” in the middle and “Zerolength Element” at the end of elements. Moreover, “SFI-MVLEM” element is used for modeling of shear walls. Nonlinear behavior in two ends of the beams and columns is assigned by “Modified Ibarra- Medina- Krawinkler Deterioration Model with Peak-Oriented Hysteretic Response” model which has been developed by Ibarra et al. (2005). This model is defined using the proposed equations by Haselto et al. (2007). Uniaxial behavior of steel reinforcements and concrete sections are simulated by Steel02 and ConcreteCM, respectively. Studied frames are verified using Hatzigeorgiou and Liolios (2010) and Liu et al. (2020) study for special moment-resisting frame with/without shear wall, respectively. In addition to linear static analysis (LSA), linear and nonlinear dynamic analyses (LDA and NDA) are applied to 3, 7 and 11 story frames with two lateral bearing systems. In this regard, 22 far-field ground motion records which have been introduced in FEMA P695 are used as seismic scenarios. These records are scaled based on Standard No. 2800 to have identical spectral acceleration with the design spectrum for the fundamental period (T) of each studied frames. For this purpose, each record is normalized to its peak ground acceleration and records are scaled so that the average acceleration spectrum of all records was above the design spectrum in 0.2T to 1.5T range. In order to evaluate the deflection amplification factor and Cd/R, maximum drift of roof and other stories is used for each frames due to concentration of structural damage in certain floors of a multi-story structures and, consequently, creating larger lateral displacements in those floors. The calculated Cd coefficients are compared to the proposed values in ASCE7 and standard No. 2800 (4th version) for all special reinforced concrete moment-resisting frames with/without shear wall. This comparison shows that the Cd coefficients which have been proposed in above-mentioned seismic design codes are not appropriate and more realistic estimate of the structural performance in earthquake has demanded larger Cd values. Moreover, Cd and Cd/R values are changed with the height of special reinforce concrete frames with/without shear wall. Finally, adequate values of deflection amplification factors are proposed for these frames with/without shear wall in this paper.
Volume 22, Issue 5 (12-2022)
Abstract
Most seismic hazard assessments are usually performed only with consideration of the initial shock in the technical literature of structural and earthquake engineering. While the magnitude of aftershocks that occur after the main earthquake, may be enough strong to cause a lot of damage to the structures. Most aftershocks increase the structural damage caused by the main earthquake because of cumulative damage and increased vulnerability may seriously threaten the safety of residents. The structures are designed for solely a single earthquake – design earthquake – based on the existing seismic design codes. For example, these codes did not provide specific values for the actual relative displacement under successive earthquakes to assess the structural damages. Therefore, considering the effect of multiple shocks consist of fore-shock and main-shock or main-shock and after-shock seems necessary. Moreover, the construction of a new building is not economic and requires a lot of time, which is not easily available to many communities. Hence, the design of structures considering the some capabilities such as replacement of damaged elements can improved significantly the performance of structures after severe successive earthquakes. However, most of the proposed structural systems are not generally repairable while replacing several damaged members under the earthquake, can be very economic and applicable. The linked column frame (LCF) as a relatively modern lateral bearing system, is a type of dual systems; the recent emergence of this structural system has reinforced the need for multiple seismic studies. For this reason, LCF is selected in this paper and the deflection amplification factor (Cd) for this system is evaluated under critical earthquakes with seismic sequences. This coefficient is calculated based on the linear displacements obtained from linear static analysis and actual values from nonlinear analysis. In this regard, 18 steel frames equipped by the linked column frame as lateral bearing system, with 3, 7, and 11 stories are designed based on the Iranian earthquake design code (Standard No. 2800, 4th version – 2014). These frames are implemented in Opensees software and have been subjected to linear static, linear, and nonlinear dynamic analyses using critical earthquakes with/ without seismic sequence phenomenon to calculate the deflection amplification factor (Cd) and Cd/R for each of them based on Uang methaod. In order to better investigation of the mentioned coefficient, the effect of various parameters such as the length of the connection beams as well as the flexural or shear behavior of the connection beams have been considered. Thus, after the evaluations, the findings indicate an increase in Cd and Cd / R values, for the linked column frame with the connected column exposed to successive earthquakes. The increase of this coefficient has been more in short-frame frames. So that the most increase which hase been related to the 3-story frame with shear behavior and 2-meter linked distance, is about 11 percentage under the successive earthquakes. Also, the average results which have been obtained from consecutive earthquakes reveal that the proposed values for Cd coefficient in the technical literature are not sufficient, and larger values have been demanded.
Volume 23, Issue 3 (8-2023)
Abstract
Seismic waves of structural vibrations propagating through the soil and transmitting to other structures, and the effect this has on seismic performance, have recently come up due to the result of recent ground movements originating in soft soil zones like Mexico City. In regions with densely built structures, this vibration may have a significant impact on structural responses. The purpose of this research is to evaluate the seismic performance of a single structure on soil (Soil-Structure Interaction, or SSI) vs. that of a pair of similar structures with differing soil conditions (Structure-Soil-Structure Interaction, or SSSI). Recent research suggests that damage risks may increase due to the SSSI impacts. The studied structure is a three-dimensional, six-story steel building with a foundationally sound moment and braced frames lateral force resisting system. To account for the non-linear behavior shown by SSSI and SSI models, a three-dimensional steel structure is presented in OpenSEES. For simulating the soil easily under the foundations and between structures, the nonlinear Beam-on-Nonlinear-Winkler-Foundation (BNWF) model is employed. There is a meter of space between structures. Therefore impact between buildings is prohibited. The SSSI and SSI systems are examined using 11 horizontal components. Ground motion magnitudes ranges from Mw = 5.0 to Mw = 8.5, soil shear velocity varies from Vs30=185 m/s to Vs30=365 m/s, and distance from faults goes from 10 km to 50 km. The two orthogonal horizontal components of selected seismic ground motion stimulate the system. Inter-story drift ratio, roof displacement, and plastic hinge rotations of structural elements are among the reactions of importance. In the SSSI and SSI models, the Park-Ang damage index is utilized to calculate the local and global damage index. This damage indicator is divided into two categories: deformation and energy-based indices. The current study's findings show that the SSSI model increases the roof displacement response by up to 58%. When the SSI and SSSI cases are compared, it is discovered that the SSSI case increases the inter-story drift ratio by 118% in the moment frame and by 53% in the braced frame. In addition to this, it is shown that, in general, a second structure may have a significant impact on the frequency amplitude of a system that is adjacent to it. According to the data, the amplitude of the power spectrum density in the SSSI model is more than 44.6% higher than that which is found in the SSI model. According to the findings, the damage index predicted by SSSI models is 32% greater than that predicted by SSI models. It is important to keep in mind that constructing a second building next to an existing one is often counterproductive and raises the possibility of damage occurring in both of the structures. As a result of the findings, it is clear that more study into SSSI phenomena and their influence on structural seismic risk is necessary. This is because it has been shown that adjacent buildings may significantly increase a structure's vulnerability to earthquakes.