Showing 5 results for Parallel Robots
Roya Sabbagh Novin, Mehdi Tale Masouleh, Mojtaba Yazdani, Behzad Danaei,
Volume 15, Issue 8 (10-2015)
Abstract
Regarding the progress in technology and increase in the capabilities of the robots, one of the main challenges in the field of robotics is the problem of real-time and collision-free path planning of robots. This paper focuses on the problem of path planning of a 3-DOF decoupled parallel robot called Tripteron in the presence of obstacles. The proposed algorithm is a synergy-based algorithm of convex optimization, disjunctive programming and model predictive control. This algorithm has many advantages compared to previous methods reported in the literature including not getting stuck in the local optimums and finding the global optimum and high computational speeds. Finally, the algorithm will be implemented on a model of the real robot. It should be mentioned that this algorithm has been implemented using Gurobi optimization package with C++ programming language in Qt Creator environment and the simulation of the parallel mechanism is performed by the CAD2MAT package for MATLAB. Obtained results reveal that the maximum computational time at each step is less that one second which, for this particular application, could be regarded as a real-time algorithm.
Hassan Bayani, Mehdi Tale Masouleh, Ahmad Kalhor,
Volume 15, Issue 12 (2-2016)
Abstract
This paper presents implementation of position control for planar cable-driven parallel robots using Visual servoing. The main contribution of this paper contains three objectives. First, a method is used toward kinematic modeling of the robot using four-bar linkage kinematic concept, which could be used in online control approaches for real-time purposes due to decreasing of the unknown parameters and computation time. In order to track the position of End-Effector, an online image processing procedure is developed and implemented. Finally, as the third contribution, two different controllers in classic and modern approaches are applied in order to validate the model with plant and obtain the most promising controller. As classic controller, pole placement approach is suggested and results demonstrate weaknesses in modeling the uncertainties although they represent acceptable performance. Due to the latter incapability, sliding mode controller is utilized and experimental tests represent effectiveness of this method. Result of the latter procedure is an inimitable operation on the desired task however, it suffers from chattering effect. Moreover, results of these controllers confirm accommodation between the model and robot. The whole procedure imposed, could be applied for any kind of cable-driven parallel robot.
Ali Aflakiyan, Mehdi Tale Masouleh, Hassan Bayani, Rasoul Sadeghian,
Volume 16, Issue 4 (6-2016)
Abstract
In this paper, kinematic and dynamic model of planar cable-driven parallel robots are introduced in general form which are verified for a constrained cable-driven parallel robot in Sim-mechanics. Path planning based on artificial potential field approach is considered to prevent collision between dynamic obstacle, end-effector and cables in order to achieve collision-free path. As well as to reduce energy consumption, cable tension constraints have been involved in optimization of path planning. This method is proposed to control a cable robot. Therefore, obstacles are distributed randomly in order to have a complex environment. By this way, cable tension constraint is studied as one of the most crucial challenges for cable driven robots. Moreover, Fmincon function of Matlab is applied in order to take into account the required constraints and maintain the limits for cables tension. The latter leads to solve the redundancy resolution which is a definite asset in controlling a cable-driven parallel robot. Finally, a four-cables driven parallel robot is controlled by using the so-called computed torque method for tracking the desired and optimized path. The method is explained and obtained results indicate the efficiency of the proposed approach.
Ali Raoofian, Afshin Taghvaeipour, Ali Kamali Eigoli,
Volume 17, Issue 6 (8-2017)
Abstract
In this study, a modified method has been introduced for forward dynamic analysis of fast parallel robots. For this purpose, inspired by the Lagrange-Virtual Spring (LVS) method, the Decoupled Natural Orthogonal Complement (DeNOC) method is modified which is a Newtonian based method. So far, virtual springs have been already used in energy based methods. However using the virtual springs in DeNOC method is a novel approach which is proposed in current study. In order to clarify the advantages of Modified Decoupled Natural Orthogonal Complement (MDeNOC) method, a planar 3RRR mechanism is chosen as case study. According to the results, the process of deriving the equations of motion is much less costly while the accuracy of MDeNOC is similar to the LVS and unlike the energy methods, the modified method is also able to calculate the constraint reactions, as well. On the other hand, the calculation time of MDeNOC is much more than the DeNOC and hence, is not suitable for real time calculations. Also, in closed loop systems, constraints must be defined in such a way that express the virtual springs’ longitudinal changes; otherwise, MDeNOC will not give proper results.
Ali Hassani, Abbas Bataleblu, Seyed Ahmad Khalilpour, Hamid D. Taghirad,
Volume 21, Issue 11 (9-2021)
Abstract
Deriving the accurate dynamic model of robots is pivotal for robot design, control, calibration, and fault detection. To derive an accurate dynamic model of robots, all the terms affecting the robotchr('39')s dynamics are necessary to be considered, and the dynamic parameters of the robot must be identified with appropriate physical insight. In this paper, first, the kinematics of the ARAS-Diamond spherical parallel robot, which has been developed for vitreoretinal ophthalmic surgery, are investigated, then by presenting a formulation based on the principle of virtual work, a linear form of robot dynamics is derived, and the obtained results are validated in SimMechanics environment. Furthermore, other terms affecting the robot dynamics are modeled, and by using the linear regression form of the robot dynamics with the required physical bounds on the parameters, the identification process is accomplished adopting the least-squares method with appropriate physical consistency. Finally, by using the criteria of the normalized root mean squared error (NRMSE) and using different trajectories, the accuracy of the identified dynamic parameters is evaluated. The experimental validation results demonstrate a good fitness for the actuator torques (about 75 percent), and a positive mass matrix in the entire workspace, which allows us to design the common model-based controllers such as the computer torque method, for precise control of the robot in vitreoretinal ophthalmic surgery.