Showing 2 results for Railway Vehicle Dynamics
, Mohamad-Reza Ghazavi,
Volume 13, Issue 1 (4-2013)
Abstract
To prevent unpleasant incidents, preservation high-speed railway vehicle stability has vital importance. For this purpose, the Railway vehicle dynamic is modeled using a 38-DOF includes the longitudinal, lateral and vertical displacements, roll, pitch and yaw angles. A heuristic nonlinear creep model and the elastic rail are used for simulation of the wheel and rail contact. To solve coupled and nonlinear differential equations, Matlab software and Runge Kutta methods are used. In order to study stability, bifurcation analyses are performed. In bifurcation analysis, speed is considered as the bifurcation parameter. These analyses are carried out for different wheel conicity and radius of the curved track. It is revealed that critical hunting speed decreases by increasing the wheel conicity or decreasing the radius of the curved track. Keywords: railway vehicle dynamics, nonlinear creep model, critical hunting speed, numerical simulation, bifurcation analysis Keywords: railway vehicle dynamics, nonlinear creep model, critical hunting speed, numerical simulation, bifurcation analysis
Mohamad-Reza Ghazavi, Mehrdad Azari Nejad, Sasan Rahmanian,
Volume 15, Issue 5 (7-2015)
Abstract
In order to avoid unpleasant incidents, it is crucial to maintain the stability for a high-speed railway vehicle. In this research, a high-speed railway vehicle dynamics with 38 degrees of freedom was investigated, adding longitudinal movement equations. Another innovation of this investigation is to determine the critical velocity for the studied railway vehicle and using nonlinear elastic rail for the wheel and rail contact. In this study, the stable and hunting behavior of the system was investigated. To identify the chaotic motion of the system, frequency analysis has been performed. Also, by plotting the Poincaré map, dynamic behavior of the system is illustrated in a discrete state space, which could be a good criteria for the chaotic or periodic behavior of the system. Long-term behavior reveals that at Speeds lower than the critical speed, the system oscillates until it reaches the steady-state of the system. In steady motion, the oscillation continues until the critical speed When the system reaches the critical velocity, the motion on the limit cycle occurs for the first time and when the speed is higher than critical speed, the vibration amplitude increased smoothly. It was observed from the frequency response plot that the hunting frequency evaluated via the linear elastic rail is higher than that of derived using a nonlinear model.