Search published articles


Showing 2 results for Robotic Arm

Mohammad Ghafoori Varzaneh, Fatemeh Yousefifar, Mohammad Mahdi Jalili,
Volume 14, Issue 2 (5-2014)
Abstract

Inspired by the muscle arrangement of the octopus and skeleton of the snakes, a wire-driven serpentine robot arm has been simulated and constructed in this article. The robot links which are connected via flexible beam act as the snake backbone. Instead of using motors at each joint, four sets of wire are employed as octopus muscles to drive the robot arm. For the spatial inverse kinematics, after determining the generalized coordinates of the system, governing algebraic equations of the system including constraint equations of the joints and cables and favorable movements have been determined. For displacement analysis, these equations have been solved using the Newton-Raphson method. Using this method robot workspace has also been determined. For the inverse dynamics of the robot, cables tension force has been considered as external forces. Using Embedding technique with specified constraint matrix, mass matrix and acceleration vectors that are determined from inverse kinematics, cables tension force and torque of motors are specified. To validate the snake robot model, a prototype has been built and programmed for some circular and arcuate routs. Travelled pass by end effector have been obtained. Comparing the results with the desired path, accuracy of the designed robot has been investigated.
Hossein Abdollahi Khosroshahi, Mohammadali Badamchizadeh,
Volume 18, Issue 9 (12-2018)
Abstract

Robotic arms are widely used for 2D desktop applications. In this paper, a new mechanism for a planar robotic arm is presented. In addition to having the benefits of both series of parallel robots, the proposed mechanism also eliminates the disadvantages of both categories. The arm made on the same side as the parallel arms has rigidity, strength and precision, and other positive features of the parallel arms, and on the other hand, like the serial arms, due to the lack of singular points inside the workspace, has a large, symmetrical and also be able to move continuously in the entire workspace. The kinematics relations for the arm are derived, and a controller based on AVR microcontroller & computer for the arm are introduced. The results indicate an improvement in arm performance and the removal of singular points from within the workspace.

Page 1 from 1