جستجو در مقالات منتشر شده


۲ نتیجه برای محفظه ذوزنقه‌ای

علی اکبر عباسیان آرانی، نرگس حاتمی نصار، محمد رضایی،
دوره ۱۴، شماره ۶ - ( ۶-۱۳۹۳ )
چکیده

در این تحقیق انتقال حرارت جابه‌جایی ترکیبی نانوسیال آب- مس در یک محفظه ذوزنقه‌ای با منابع حرارتی روی دیواره‌های جانبی آن به صورت عددی بررسی شده است. منابع حرارتی روی دیواره‌های قائم در دماهای Th و Tc واقع شده¬اند و دیواره‌های افقی عایق می‌باشند. جریان جابه‌جایی اجباری توسط عبور سیال از آن و جابه‌جایی طبیعی با قرار دادن دیواره چپ در دمایی بالاتر از دیواره راست ایجاد می¬شود. برای بررسی اثر مکان دریچه ورودی و خروجی، دو حالت بررسی شده است. مقایسه بین نتایج نشان می‌دهد که نرخ انتقال حرارت در حالتی که ورودی به دیواره سرد نزدیک‌تر است بیشتر از حالتی است که دیواره گرم نزدیک‌تر می‌باشد. نتایج برای مقادیر مختلف کسر حجمی نانو‌ذرات، عدد ریچاردسون و عدد رینولدز ارائه شده‌اند. بر¬اساس نتایج مشاهده شد که به ازای اعداد رینولدز و ریچاردسون مورد بررسی، در یک عدد رینولدز و کسر حجمی مشخص با افزایش عدد ریچاردسون، عدد ناسلت افزایش می‌یابد و هم چنین در یک ریچاردسون و کسر حجمی مشخص افزایش عدد رینولدز باعث افزایش عدد ناسلت می‌شود. برای عدد ریچاردسون و رینولدز بالاتر، نانوسیال بر افزایش عملکرد انتقال گرما تأثیر بیشتری دارد.
علیرضا آقایی، حسین خراسانی زاده، قنبرعلی شیخ زاده،
دوره ۱۴، شماره ۹ - ( ۹-۱۳۹۳ )
چکیده

در این تحقیق اثر میدان مغناطیسی بر میدان جریان، انتقال حرارت و تولید انتروپی جابه‌جایی توام نانوسیال آب–مس با لحاظ اثر حرکت براونی نانوذرات در محفظه‌ی ذوزنقه‌ای مطالعه شده است. دیواره‌های جانبی محفظه عایق، دیواره‌ی بالایی سرد و متحرک به سمت راست یا چپ و دیواره‌ی پایینی گرم است و زوایه‌ی دیواره‌های جانبی با افق ˚۴۵ است. مطالعه در گراشف ۱۰۴، برای اعداد رینولدز ۳۰، ۱۰۰، ۳۰۰ و ۱۰۰۰، اعداد هارتمن ۲۵، ۵۰، ۷۵ و۱۰۰ و کسر حجمی‌های ۰تا ۰۴/۰ از نانوذرات انجام شده است. معادلات حاکم با روش حجم محدود و الگوریتم سیمپلر به‌صورت عددی با استفاده از یک برنامه کامپیوتری حل شده‌اند. نتایج نشان دادند که با اعمال میدان مغناطیسی و افزایش آن، سرعت جابه‌جایی نانوسیال و قدرت جریان کاهش می‌یابد و رفتار از جابه‌جایی توام به آزاد و یا هدایت حرارتی تغییر می‌کند. به‌همین دلیل در همه‌ی اعداد رینولدز و کسر حجمی‌ها با افزایش عدد هارتمن، عدد ناسلت متوسط کاهش می‌یابد. در تمام حالت‌های بررسی شده، انتروپی تولیدی ناشی از اصطکاک بسیار ناچیز می‌باشد و عمده انتروپی تولیدی ناشی از انتقال حرارت برگشت ناپذیر است و همچنین تغییرات انتروپی تولیدی کل با عدد هارتمن مشابه تغییرات عدد ناسلت متوسط می‌باشد. تغییر در جهت حرکت درپوش در رینولدز ۳۰ باعث تغییر ناسلت متوسط و انتروپی تولیدی کل می‌شود ولی در رینولدز ۱۰۰۰ تاثیر آن ناچیز است.

صفحه ۱ از ۱