Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1387-1398 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodatars S, Mosavi Seyedi S, Motevali A, Montazeri M. Simulation and Experimental Evaluation of Linear Parabolic Concentrator Equipped with Photovoltaic-Thermal System. Modares Mechanical Engineering 2020; 20 (5) :1387-1398
URL: http://mme.modares.ac.ir/article-15-35965-en.html
1- Simulation and Experimental Evaluation of Linear Parabolic Concentrator Equipped with Photovoltaic-Thermal System
2- Simulation and Experimental Evaluation of Linear Parabolic Concentrator Equipped with Photovoltaic-Thermal System , mousavi22@gmail.com
3- Biosystem Enginearing Department, Agriculture Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (2265 Views)
Now a day most countries are interested in renewable energy due to the many problems with fossil fuel use. One of the best types of renewable energies is solar energy and can be produced in electrical, thermal and hybrid forms by photovoltaic cells equipped with thermal collectors. In this research a systemLinear parabolic focusers equipped with photovoltaic cells were designed and simulated in Optic Ray Tracing and Solidworks software and compared with experimental results. The thermal collector was simulated in a photovoltaic-thermal hybrid system with two longitudinal and transverse arrangements with internal diameters of 8 to 14 mm at three discharge levels.Simulation results of two longitudinal and transverse arrangements showed that the thermal efficiency in the longitudinal arrangement was better than the transverse ones. and by increasing diameter from 8 to 12 mm the thermal efficiency increased and the thermal efficiency from 12 to 14 mm alignment of the pipes did not change much. Also by increasing the fluid discharge from 1 to 3 l/min the thermal efficiency due to the decrease in thermal losses and the electrical efficiency due to the decrease in temperature Photovoltaic cell surface increased. Comparison of the simulation results and the experimental evaluation showed that the maximum thermal and electrical efficiency for the data Simulations were 61.18% and 12.58%, respectively, and for field data is calculated 58.14% and 12.03%, respectively.
Full-Text [PDF 1366 kb]   (1354 Downloads)    
Article Type: Original Research | Subject: Renewable Energy
Received: 2019/08/31 | Accepted: 2019/10/12 | Published: 2020/05/9

References
1. Bellos E, Korres D, Tzivanidis C, Antonopoulos KA. Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments. 2016;16:53-63. [Link] [DOI:10.1016/j.seta.2016.04.005]
2. Chukwuka C, Folly KA. Overview of concentrated photovoltaic (CPV) cells. Journal of Power and Energy Engineering. 2014;2(11):1-8. [Link] [DOI:10.4236/jpee.2014.211001]
3. Pintaldi S, Sethuven katraman S, White S, Rosengarten G. Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Applied Energy. 2017;188:160-177. [Link] [DOI:10.1016/j.apenergy.2016.11.123]
4. Lämmle M, Thoma C, Hermann M. A PVT collector concept with variable film insulation and low-emissivity coating. Energy Procedia. 2016;91:72-77. [Link] [DOI:10.1016/j.egypro.2016.06.174]
5. Mohammadi Sardouei M, Mortezapour H, Jafari Naeimi K. Numerical analysis of using photovoltaic-thermal combined solar water heater in Iran. Journal of Agricultural Machinery. 2017;7(1):221-233. [Persian] [Link]
6. Liang R, Zhou C, Pan Q, Zhang J. Performance evaluation of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors connected in series. Procedia Engineering. 2017;205:461-468. [Link] [DOI:10.1016/j.proeng.2017.10.411]
7. Del Col D, Bortolato M, Padovan A, Quaggia M. Experimental and numerical study of a parabolic trough linear CPVT system. Energy Procedia. 2014;57:255-264. [Link] [DOI:10.1016/j.egypro.2014.10.030]
8. Krüger D, Pandian Y, Hennecke K, Schmitz M. Parabolic trough collector testing in the frame of the REACt project. Desalination. 2008;220(1-3):612-618. [Link] [DOI:10.1016/j.desal.2007.04.062]
9. Daneshazarian R, Cuce E, Cuce PM, Sher F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renewable and Sustainable Energy Reviews. 2018;81:473-492. [Link] [DOI:10.1016/j.rser.2017.08.013]
10. Chang C, Xu C, Wu ZY, Li X, Zhang QQ, Wang ZF. Heat transfer enhancement and performance of solar thermal absorber tubes with circumferentially non-uniform heat flux. Energy Procedia. 2015;69:320-327. [Link] [DOI:10.1016/j.egypro.2015.03.036]
11. Mohsenzadeh M, Shafii MB. Performance analysis of parabolic through solar equipped with solar cell and TEG module. 2nd International Conference and Exhibition on Solar Energy (ICESE), 2015 August 30-31, Tehran, Iran. Tehran: Civilica; 2015. [Link]
12. Calise F, Palombo A, Vanoli L. A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses. Energy. 2012;46(1):283-294 [Link] [DOI:10.1016/j.energy.2012.08.021]
13. Karathanassis IK, Papanicolaou E, Belessiotis V, Bergeles GC. Dynamic simulation and exergetic optimization of a concentrating photovoltaic/thermal (CPVT) system. Renewable Energy. 2019;135:1035-47. [Link] [DOI:10.1016/j.renene.2018.12.085]
14. Kalogirou SA. A detailed thermal model of a parabolic trough collector receiver. Energy. 2012;48(1):298-306. [Link] [DOI:10.1016/j.energy.2012.06.023]
15. Bellos E, Tzivanidis C. Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector. Energy Conversion and Management. 2019;180:171-182. [Link] [DOI:10.1016/j.enconman.2018.11.008]
16. Chaabane M, Charfi W, Mhiri H, Bournot P. Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems. Solar Energy. 2013;98:315-321. [Link] [DOI:10.1016/j.solener.2013.09.029]
17. Srivastava S, Reddy KS. Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system. Solar Energy. 2017;149:195-213. [Link] [DOI:10.1016/j.solener.2017.04.004]
18. Karathanassis IK, Papanicolaou E, Belessiotis V, Bergeles GC. Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling. Renewable Energy. 2017;101:467-483. [Link] [DOI:10.1016/j.renene.2016.09.013]
19. Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Conversion and Management. 2018;160:93-108. [Link] [DOI:10.1016/j.enconman.2018.01.006]
20. Taji M. Manufacturing a trough parabolic solar collector and predicting its theoretical performance. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering. 2017;10(1):747-758. [Persian] [Link]
21. Calise F, Vanoli L. Parabolic trough photovoltaic/thermal collectors: design and simulation model. Energies. 2012;5(10):4186-4208. [Link] [DOI:10.3390/en5104186]
22. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Applied Energy. 2017;205:540-561. [Link] [DOI:10.1016/j.apenergy.2017.07.141]
23. Yazdanifard F, Ameri M, Ebrahiminia Bajestan E. Investigating the effect of different variables on the performance of a photovoltaic/thermal system water bed plate. Journal of Engineering and Energy Management. 2017;6(2):59-46. [Persian] [Link]
24. Bellos E, Mathioulakis E, Tzivanidis C, Belessiotis V, Antonopoulos KA. Experimental and numerical investigation of a linear fresnel solar collector with flat plate receiver. Energy Conversion and Management. 2016;130:44-59. [Link] [DOI:10.1016/j.enconman.2016.10.041]
25. Pavlović SR, Stefanović VP, Bellos E. Design and simulation of a solar dish concentrator with spiral-coil smooth thermal absorber. Thermal Science. 2016;20(4):1-11. [Link] [DOI:10.2298/TSCI160213104P]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.