Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2413-2421 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hoseini S, Qods F, Mohammadian Semnani H. Investigation of Microstructure and Mechanical Properties of AA5051 Aluminium Alloy Deformed by ECAP Method in BC Route. Modares Mechanical Engineering 2020; 20 (9) :2413-2421
URL: http://mme.modares.ac.ir/article-15-43614-en.html
1- Materials Science and Engineering Department, Materials Faculty, Semnan University, Semnan, Iran
2- Materials Science and Engineering Department, Materials Faculty, Semnan University, Semnan, Iran , qods@semnan.ac.ir
Abstract:   (1762 Views)
This research is mainly focused on to study microstructure and mechanical properties of AA5051 aluminum alloy deformed by equal-channel angular pressing (ECAP) process at 200˚C and in BC routes and 4 four passes. The ECAP processing was carried out using die with an intersecting channel angle ‘ϕ’= 120° and corner angle ‘Ψ’= 20°. The results of uniaxial tensile test showed that tensile strength was found to be increased from 115MPa for annealed sample to 239MPa after four passes ECAP in route BC that shows that the strength in ECAP samples has increased. In addition, the percentage of elongation also decreased in initially passes and then increased slowly. Microstructure and grain refinement of specimens were investigated by optical microscopy and scanning electron microscopy and fractography were investigated by scanning electron microscopy. The grain size of annealed sample was 123μm and decreased to 18μm after four passes ECAP in route BC. The hardness also increased from 51HV in annealed sample to 90HV the fourth passes.
Full-Text [PDF 708 kb]   (1576 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2020/06/12 | Accepted: 2020/07/23 | Published: 2020/09/20

References
1. Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nano Structured materials from severe plastic deformation. Progress in Materials Science. 2000;45(2):103-189. [Link] [DOI:10.1016/S0079-6425(99)00007-9]
2. Chen YJ, Roven HJ, Gireesh SS, Skaret PC, Hjelen J. Quantative study of grain refinement in Al-Mg Alloy processed by equal channel Angular pressing at cryogenic temperature. Materials Letters. 2011;65(23-24):3472-3475. [Link] [DOI:10.1016/j.matlet.2011.07.067]
3. Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK. Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy. Materials Science and Engineering: A. 2010;527(20):5246-5254. [Link] [DOI:10.1016/j.msea.2010.04.086]
4. Cardoso KR, Travessa DN, Botta WJ, Jorge Jr AM. High Strength AA7050 Al alloy processed by ECAP: Microstructure and mechanical properties. Materials Science and Engineering: A. 2011;528(18):5804-5811. [Link] [DOI:10.1016/j.msea.2011.04.007]
5. Rollett A, Humphreys FJ, Rohrer GS, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier; 2004. [Link] [DOI:10.1016/B978-008044164-1/50016-5]
6. Mishra A, Richard V, Gregori F, Asaro RJ, Meyers MA. Microstructural evolution in copper processed by sever plastic deformation. Material science and Engineering: A. 2005;410-411:290-298. [Link] [DOI:10.1016/j.msea.2005.08.201]
7. Valiev RZ, Langdon TG. Principal of equal channel angular pressing as a processing tool for refinement. Progress in Material Science. 2006;51(7):881-981. [Link] [DOI:10.1016/j.pmatsci.2006.02.003]
8. Langdon TG. The principles of grain refinement in equal-channel angular pressing. Materials Science and Engineering: A. 2007;462(1-2):3-11. [Link] [DOI:10.1016/j.msea.2006.02.473]
9. Fang DR, Duan QQ, Zhao NQ, Li JJ, Wu SD, Zhang Z. Tensile properties and fracture mechanism of Al-Mg Alloy subjected to ECAP. Materials Science and Engineering: A. 2007;459(1):137-144. [Link] [DOI:10.1016/j.msea.2007.01.062]
10. Toros S, Ozturk F, Kacar I. Review of warm forming of aluminum-magnesium alloys. Journal of Materials Processing Technology. 2008;207(1-3):1-12. [Link] [DOI:10.1016/j.jmatprotec.2008.03.057]
11. Atkinson M. Bifurcation of thermal restoration processes in deformed iron and steel. Materials Science and Engineering: A. 1999;262(1-2):33-38. [Link] [DOI:10.1016/S0921-5093(98)01031-4]
12. Khelfa T, Rekik MA, Munoz-Bolanos JA, Cabrera-Marrero JM, Khitouni M. Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). The International Journal of Advanced Manufacturing Technology. 2018;95:1165-1177. [Link] [DOI:10.1007/s00170-017-1310-1]
13. Mazurina I, Sakai T, Miura H, Sitdikov O, Kaibyshev R. Grain refinement in aluminum alloy 2219 during ECAP at 250◦C. Materials Science and Engineering: A. 2008;473(1-2):297-305. [Link] [DOI:10.1016/j.msea.2007.04.112]
14. Suresh M, Sharma A, More AM, Kalsar R, Bisht A, Nayan N, et al. Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195. Journal of Alloys and Compounds. 2019;785:972-983. [Link] [DOI:10.1016/j.jallcom.2019.01.161]
15. Sitdikov O, Sakai T, Avtokratov E, Kaibyshev R, Kimura Y, Tsuzaki K. Grain refinement in a commercial Al-Mg-Sc alloy under hot ECAP conditions. Materials Science and Engineering: A. 2007;444(1-2):18-30. [Link] [DOI:10.1016/j.msea.2006.06.081]
16. Sevillano JG, Houtte PV, Aernoudt E. Large strain work hardening and textures. Progress in Materials Science. 1980;25(2-4):69-134. [Link] [DOI:10.1016/0079-6425(80)90001-8]
17. Tikhonova M, Belyakov A, Kaibyshev R. Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging. Materials Science and Engineering: A. 2013;564:413-422. [Link] [DOI:10.1016/j.msea.2012.11.088]
18. Khelfa T, Munoz‑Bolanos JA, Li F, Cabrera‑Marrero JM, Khitouni M. Microstructure and mechanical properties of AA6082‑T6 by ECAP under warm processing. Metals and Materials International. 2020;26:1247-1261. [Link] [DOI:10.1007/s12540-019-00388-y]
19. Dudova N, Belyakov A, Sakai T, Kaibyshev R. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working. Acta Materialia. 2010;58(10):3624-3632. [Link] [DOI:10.1016/j.actamat.2010.02.032]
20. Yamashita A,Yamaguchi D, Horita Z, Langdon TG. Influence of pressing temperature on microstructural development in equal-channel angular pressing. Materials Science and Engineering: A. 2000;287(1):100-106. [Link] [DOI:10.1016/S0921-5093(00)00836-4]
21. Shaeri MH, Shaeri M, Ebrahimi M, Salehi MT, Seyyedin SH. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Progress in Natural Science: Materials International. 2016;26(2):182-191. [Link] [DOI:10.1016/j.pnsc.2016.03.003]
22. Cardoso KR, Munoz-Morris MA, León KV, Morris DG. Room and high temperature ECAP processing of Al-10%Si alloy. Materials Science and Engineering: A. 2013;587:387-396. [Link] [DOI:10.1016/j.msea.2013.09.006]
23. Naik GM, Gote GD, Narendranath S. Microstructural and hardness evolution of AZ80 alloy after ECAP and post-ECAP processes. Materials Today: Proceedings. 2018;5(9):17763-17768. [Link] [DOI:10.1016/j.matpr.2018.06.100]
24. Vega MCV, Piva BH, Bolmaro R, Ferrante M, Kliauga AM. The texture developement of ECAP processed AA1050 aluminum before and after a final anneal: Effect of the initial texture. IOP Conference Series: Materials Science and Engineering. 2014;63(1):1240-1249. [Link] [DOI:10.1088/1757-899X/63/1/012152]
25. Damavandi E, Nourouzi S, Rabiee SM, Jamaati R. Texture and microstructure evolution of A390 aluminum alloy during ECAP. Materials Research Express. 2019;6(7):076536. [Link] [DOI:10.1088/2053-1591/ab13be]
26. Yuan Y, Ma A, Gou X, Jiang J, Arhin G, Song D, et al. Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Materials Science and Engineering: A. 2016;677:125-132. [Link] [DOI:10.1016/j.msea.2016.09.037]
27. Alizadeh R, Mahmudi R, Pereira PHR, Huang Y, Longdon TG. Microstructural evaluation and superplasticity in an Mg-Gd-Y-Zr alloy after processing by different SPD techniques. Materials Science and Engineering: A. 2017;682:577-585. [Link] [DOI:10.1016/j.msea.2016.11.080]
28. Hu J, Jonas JJ, Zhou Y, Ishikawa T. Influence of damage and texture evolution on limit strain in biaxially stretched aluminum alloy. Materials Science and Engineering: A. 1998;251(1-2):243-250. [Link] [DOI:10.1016/S0921-5093(98)00585-1]
29. Swygenhoven HV, Derlet PM, Froseth AG. Stacking fault energies and slip in nanocrystalline metals. Nature Materials. 2004;3:399-403. [Link] [DOI:10.1038/nmat1136]
30. Kumar KS, Swygenhoven HV, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia. 2003;51(19):5743-5774. [Link] [DOI:10.1016/j.actamat.2003.08.032]
31. Iwahashi Y, Horita Z, Nemoto M, Longdon TG. The process of grain refinement in equal channel angular pressing. Acta Materialia. 1998;46(9):3317-3331. [Link] [DOI:10.1016/S1359-6454(97)00494-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.