دوره 22، شماره 7 - ( تیر 1401 )                   جلد 22 شماره 7 صفحات 471-461 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zakavi S J, Bakhshipour E. The Effect of Temperature and Bending Moments on the Strain Accumulation of Carbon Steel Piping Branch. Modares Mechanical Engineering 2022; 22 (7) :461-471
URL: http://mme.modares.ac.ir/article-15-58971-fa.html
زکوی سید جاوید، بخشی پور اسماعیل. تاثیر دما و ممان های خمشی در میزان انباشتگی کرنش لوله های سه راهی از جنس فولاد کربنی ساده. مهندسی مکانیک مدرس. 1401; 22 (7) :461-471

URL: http://mme.modares.ac.ir/article-15-58971-fa.html


1- دانشگاه محقق اردبیلی ، zakavi@uma.ac.ir
2- دانشگاه محقق اردبیلی
چکیده:   (1060 مشاهده)
در این مقاله، با استفاده از مدل سختی سینماتیکی شابوش به همراه قانون سخت­شوندگی ایزوتروپیک به بررسی تاثیر دما و ممان­های خمشی در میزان رفتار انباشتگی کرنشی لوله سه­راهی از جنس فولاد کربنی ساده پرداخته می­شود. لوله­های سه­راهی تحت فشار و دمای داخلی ثابت همراه با ممان دینامیکی سیکلی داخل صفحه متاثر از پنج دمای 20، 50، 100، 150 و 200 درجه سانتی­گراد می باشند. نتایج عددی به دست آمده بر روی نمونه­های مورد آزمون نشانگر این است که حداکثر مقدار کرنش پیش‌رونده در نزدیکی محل اتصال سه‌راهی در جهت محیطی اتفاق می‌افتد. کرنش­های پیش­رونده به وجود آمده، اکثراً ناشی از ممان­های دینامیکی و دماهای بالا می­باشد. نتایج به دست آمده نشان می­دهد که در هر سه نمونه موجود، میزان کرنش­های پیش­رونده با افزایش اندازه ممان­دینامیکی و دما، افزایش می­یابد. با افزایش نسبت قطر به ضخامت در لوله­های سه­راهی، شروع کرنش­های پیش رونده محیطی در نسبت های ممان کم اتفاق می افتد. در کل می­توان نتیجه گرفت که نرخ کرنش­های پیش­رونده در ابتدا زیاد بوده و با افزایش سیکل­ های بارگذاری، این نرخ به علت غالب بودن پدیده سخت شوندگی کرنش کاهش پیدا می­کند. البته افزایش کرنش های پیش­رونده در دما­های بالا شامل کرنش خزشی به علت بالا رفتن دما و عمدتا کرنش پلاستیکی انباشته به علت پلاستیک سیکلی در اثر ممان های دینامیکی می­باشد.
متن کامل [PDF 846 kb]   (573 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: پلاستیسیته
دریافت: 1400/11/4 | پذیرش: 1401/1/15 | انتشار: 1401/4/10

فهرست منابع
1. [1] Kaae, J.L., High-temperature Low-cycle fatigue of Alloy 800H. Int. J. of Fatigue, 31:332-340, 2009. [DOI:10.1016/j.ijfatigue.2008.08.002]
2. [2] Zhu, J., Xu. Chen, F. Xue, W. Yu, Beading Ratcheting tests of Z2CND18.12 Stainless Steel. Int. J. of Fatigue, 35: 16-22,2012. [DOI:10.1016/j.ijfatigue.2011.04.008]
3. [3] Kreethi, R., Mondal, A.K., Dutta, K., Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions. Materials Science and Engineering: A, 679: 66-74, 2017. [DOI:10.1016/j.msea.2016.10.019]
4. [4] Hang, Li., K. Guozheng, Yu. Chao and L. Yujie, Experimental investigation on temperature-dependent uniaxial ratcheting of AZ31B magnesium alloy. Int. J. of Fatigue, Vol. 120, pp. 33-45, 2019. [DOI:10.1016/j.ijfatigue.2018.10.020]
5. [5] Karvan, P., A. Varvani-Farahani, Ratcheting assessment of Visco-Plastic alloys at ambient temperature by means of the A-V and O-W hardening rate frameworks. Mechanics of Materials, Vol. 130, pp. 95-104, 2019. [DOI:10.1016/j.mechmat.2019.01.007]
6. [6] Yang., J. Guozheng Kang, Yujie Liu, Kaijuan Chen AND Qianhua Kan, Experimental study on rate-dependent uniaxial whole-life ratchetting and fatigue behavior of polyamide 6. International Journal of Fatigue, Vol. 132, 2019. [DOI:10.1016/j.ijfatigue.2019.105402]
7. [7] Tasavori M, Zehsaz M, Vakili Tahami F, Ratcheting assessment in the tubesheets of heat exchangers using the nonlinear isotropic/kinematic hardening model,International Journal of Pressure Vessels and Piping,2020: 183 [DOI:10.1016/j.ijpvp.2020.104103]
8. [8] Prerna Mishra, N.C. Santhi Srinivas, Vakil Singh,.Ratcheting fatigue of modified 9Cr-1Mo steel and Inconel alloy 617 at ambient temperature: Effect of uniform plastic strain, Materials Letters, 2022: 314 [DOI:10.1016/j.matlet.2022.131916]
9. [9] K. Yahiaoui, D. N. Moreton, D. G. Moffat, Response and cyclic strain accumulation of pressurized piping elbows under dynamic out-of-plane bending, Int. J. of strain analysis, pp. 153-166, 1996 [DOI:10.1243/03093247V312153]
10. [10 Khodadadi B, Zakavi SJ. Study on strain accumulations of plain carbon steel elbows subjected to dynamic out of plane bending by the chaboche model with isotropic hardening. MSc. Thesis Mech. Eng., Fac. Eng. Univ. mohaghegh ardabill, 2017, n.d.
11. [11] S. J. Zakavi, Y. Aghaei, The ratcheting behavior of Carbon Steel piping elbows under cyclic bending moments and temperature, the Brazilian society of Mechanical Sciences and Engineering, pp. 42-436, 2020. [DOI:10.1007/s40430-020-02521-0]
12. [12] Yahiaoui, K, Moffat, D.G. and Moreton, D.N., Single Frequency Seismic Loading Tests on Pressurized Branch Pipe Intersections Machined from Solid. The Journal of Strain Analysis for Engineering Design, 28, 197-207, 1993 [DOI:10.1243/03093247V283197]
13. [13] JL. Chaboche, Time independent constitutive theories for cyclic plasticity. Int J Plast; pp. 149-188, 1986. [DOI:10.1016/0749-6419(86)90010-0]
14. [14] JL. Chaboche, On some modifications of kinematic hardening to improve the description of ratcheting effects. Int J Plast; pp. 661-678, 1991. [DOI:10.1016/0749-6419(91)90050-9]
15. [15] J. Lemaitre, J. L. Chaboche, Mechanics of Solid Materials. Cambridge University Press, 584 P, 1994.
16. [16] M. Mardomi Bashir, S. J. Zakavi, Evaluatin of the ratcheting behaviour of carbon Steel pressurized piping elbows by chaboche cyclic plasticity model, 25 th Annual international conference on mechanical engineering, 2017.
17. [17] S. J. Zakavi, B. Shiralivand, M. Nourbakhsh, Evaluation of combined hardening model in ratcheting behavior of pressurized piping elbows subjected to in-plane moments, JCARME, 2017; 7(1) :57-71.
18. [18] S. J. Zakavi, M. Zehsaz, MR. Eslami, The ratchetting behavior of pressurized plain pipework subjected to cyclic bending moment with the combined hardening model. Nuclear Engineering and Design, 240(4), 726-737, 2010. [DOI:10.1016/j.nucengdes.2009.12.012]
19. [19] Zakavi S J, Nourbakhsh M. The effect of Basic factors on strain accumulation of pressurized piping elbows under dynamic moments. Modares Mechanical Engineering. 2015; 15 (5) :412-418
20. [20] Zakavi S, Mohammadi Asl H, Babaee D. Study of Ratcheting Behavior of 304L Stainless Steel Branch Pipes by Using Chaboche and Combined Hardening Models. Modares Mechanical Engineering. 2019; 19 (9) :2193-2201
21. [21] Zakavi S J, Malekzadeh B, shayestehnia E, shiralivand B. Evaluation of several hardening models in the ratcheting behavior of piping branch with Different diameter/thickness ratios. Modares Mechanical Engineering. 2018; 18 (2) :201-208
22. [22] Zakavi S J, Rahimi A., The Effect of Dynamic Loading on the Ratcheting Behavior of Pressurized Piping Branch. Tabriz Un. J. of Mecanical Eng. 2015., 45(3) :63-68.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.