Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 449-456 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbari Mousavi S, Faghani G, Sheivani H. Microstructural and Mechanical Investigation of the Joint of Aluminum Alloy 6061 with CO2 Laser High Power Welding Machine. Modares Mechanical Engineering 2020; 20 (2) :449-456
URL: http://mme.modares.ac.ir/article-15-31494-en.html
1- Metallurgy & Material Department, Metallurgy & Material Faculty, Engineering Campus, University of Tehran, Tehran, Iran , akbarimusavi@ut.ac.ir
2- Materials Department, Mechanical Faculty, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
3- Metallurgy & Material Department, Metallurgy & Material Faculty, Engineering Campus, University of Tehran, Tehran, Iran
Abstract:   (4907 Views)
One of the emerging methods of joining various metals is the use of laser beam welding in a variety of industries such as transportation, aerospace, radar, and marine construction, which reduces fuel consumption and thus reduces environmental pollution. In this study, the microstructure and mechanical properties of similar joints of aluminum alloy 6061 with a thickness of 2 millimeters have been investigated by the laser beam welding method with a high power of 5000 watts. Examined items include the effect of laser welding parameters such as power, frequency, and welding speed on microstructural and mechanical properties. Microstructural analysis results using an optical and scanning electron microscope show that in the process, the microstructure of the weld in the base metal to the center of the weld region changed from the dendritic column to the parallel dendritic zone and eventually reached the equiaxed dendritic area, due to the higher input temperature and consequently less cooling rate. Energy-dispersive X-ray spectroscopy (EDS) showed no significant change in the chemical composition. Investigating the mechanical properties using hardness measurement, and the tensile testing showed that the hardness in the fusion zone was lower than other base metal zones, and the optimized sample was failed in the weld zone. The tensile strength of the optimum welding sample is approximately equal to half the tensile strength of the base metal.
Full-Text [PDF 1191 kb]   (2393 Downloads)    
Article Type: Original Research | Subject: Welding
Received: 2019/03/20 | Accepted: 2019/05/23 | Published: 2020/02/1

References
1. Avedesian M.M, Baker H, editors. ASM specialty handbook: magnesium and magnesium alloys. Cleveland: ASM International; 1999. [Link]
2. Nof SY, editor. Springer handbook of automation. Berlin: Springer Science & Business Media; 2009. [Link] [DOI:10.1007/978-3-540-78831-7]
3. Malek F, Sheikhi M. Application of laser in welding of non-similar metals. Unknown Publisher. 2011. [Persian] [Link]
4. Ghorbanian J. Aluminum, and its Alloys. 1st Edition. Tehran: Hosein Serajian; 2008. [Persian] [Link]
5. Cieslak MJ, Fuerschbach PW. On the weldability, composition, and hardness of pulsed and continuous Nd:YAG laser welds in aluminum alloys 6061,5456, and 5086. Metallurgical Transactions B. 1988;19(2):319-329. [Link] [DOI:10.1007/BF02654217]
6. El-Batahgy A, Kutsuna M. Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Advances in Materials Science and Engineering. 2009;2009: Article ID 974182. [Link] [DOI:10.1155/2009/974182]
7. Hirose A, Kobayashi KF, Todaka H. CO2 laser beam welding of 6061-T6 aluminum alloy thin plate. Metallurgical and Materials Transactions A. 1997;28(12):2657-2662. [Link] [DOI:10.1007/s11661-997-0022-9]
8. Chowdhury SH, Chen DL, Bhole SD, Powidajko E, Weckman DC, Zhou Y. Fiber laser welded AZ31 magnesium alloy: The effect of welding speed on microstructure and mechanical properties. Metallurgical and Materials Transactions A. 2012;43(6):2133-2147. [Link] [DOI:10.1007/s11661-011-1042-z]
9. Yang ZB, Tao W, Li LQ, Chen YB, Li FZ, Zhang YL. Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: Process, microstructure, and mechanical properties. Materials & Design. 2012;33:652-658. [Link] [DOI:10.1016/j.matdes.2011.07.059]
10. Cui L, Li X, He D, Chen L, Gong S. Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy. Materials Characterization. 2012;71:95-102. [Link] [DOI:10.1016/j.matchar.2012.06.011]
11. Malekshahi Beiranvand Z, Malek Ghaini F, Naffakh-Moosavy H, Sheikhi M, Torkamany MJ. Magnesium loss in Nd:YAG pulsed laser welding of aluminum alloys. Metallurgical and Materials Transactions B. 2018;49(5):2896-2905. [Link] [DOI:10.1007/s11663-018-1315-7]
12. Ansari M, Heydarzadeh Sohi M, Soltani R, Torkamany MJ. Effect of pulsed Nd:YAG laser re-melting on chromium surface alloyed AA6061-T6 aluminum. The International Journal of Advanced Manufacturing Technology. 2016;83(1-4):285-291. [Link] [DOI:10.1007/s00170-015-7516-1]
13. Chu Q, Bai R, Jian H, Lei Z, Hu N, Yan C. Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints. Materials Characterization. 2018;137:269-276. [Link] [DOI:10.1016/j.matchar.2018.01.030]
14. Wang L, Gao M, Zhang C, Zeng X. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Materials & Design. 2016;108:707-717. [Link] [DOI:10.1016/j.matdes.2016.07.053]
15. Hagenlocher C, Fetzer F, Weber R, Graf T. Benefits of very high feed rates for laser beam welding of AlMgSi aluminum alloys. Journal of Laser Applications. 2018;30(1):012015. [Link] [DOI:10.2351/1.5003795]
16. Huang L, Hua X, Wu D, Fang L, Cai Y, Ye Y. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding. Journal of Manufacturing Processes. 2018;33:43-53. [Link] [DOI:10.1016/j.jmapro.2018.04.023]
17. Moradi M, Ghoreishi M. Influences of laser welding parameters on the geometric profile of NI-base superalloy Rene 80 weld-bead. The International Journal of Advanced Manufacturing Technology. 2011;55(1-4):205-215. [Link] [DOI:10.1007/s00170-010-3036-1]
18. Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Optics and Lasers in Engineering. 2017;96:1-6. [Link] [DOI:10.1016/j.optlaseng.2017.04.004]
19. Moradi M, Ghoreishi M, Khorram A. Process and Outcome Comparison Between Laser, Tungsten Inert Gas (TIG) and Laser-TIG Hybrid Welding. Lasers in Engineering (Old City Publishing). 2018;39(3-6):379-391. [Link]
20. Hong KM, Shin YC. Prospects of laser welding technology in the automotive industry: A review. Journal of Materials Processing Technology. 2017;245:46-69. [Link] [DOI:10.1016/j.jmatprotec.2017.02.008]
21. Hori H. Effect of heat-affected zone on joint strength of welded Al-Mg-Si System. Welding International. 2011;25(10):737-741. [Link] [DOI:10.1080/09507116.2010.527049]
22. Huntington C, Eagar TW. Laser welding of aluminum and aluminum alloys. Welding Research Supplement. 1983;105-S-107-S. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.