Volume 19, Issue 10 (October 2019)                   Modares Mechanical Engineering 2019, 19(10): 2329-2338 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salehi M, Kakaee A, Chitsaz I. Feasibility Study of Partially Stratified Charge Mixture Formation and Its Effects on CNG Direct Injection Engine. Modares Mechanical Engineering 2019; 19 (10) :2329-2338
URL: http://mme.modares.ac.ir/article-15-17797-en.html
1- Calibration Department, Iran-Khodro Powertrain Company (IPCO), Tehran, Iran
2- Automotive Engineering Department, Automotive School, Iran University of science and technology, Tehran, Iran
3- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran , ichitsaz189@gmail.com
Abstract:   (7125 Views)

Natural gas characteristics make it an attractive choice for replacing with oil fuels which causes climatic problems and environmental pollutions in the world. Generally, using natural gas in an internal combustion engine leads to lower volumetric efficiency of the engine, but gas direct injection technology would improve volumetric efficiency. Furthermore, more research is essential for improving the effectiveness of direct injection engines. A partially stratified charge is an appropriate idea for combustion efficiency improvement in direct injection engines. In the present study, a port injection engine is converted to direct injection engine and feasibility and condition of partially stratified mixture formation are investigated. Also, its effects on combustion and efficiency of the engine, with regards to location and injection timing of injector are noticed. Numerically simulation of current study shows that the formation of partially stratified charge, because of using air-guided method and located injector between air intake valves, is so hard and inaccessible. The high momentum of CNG jet makes a rapid motion of injected gas fuel and is not able to perform an appropriate mixture of air and fuel. Accordingly, an increase in air and fuel ratio is locally seen in the combustion chamber as this causes a drop in combustion efficiency. Although the increase in flame propagation and heat release can be expressed as results of this study, however, the benefits of rapid burning of CNG combustion due to the problems that are mentioned are not so impressive.


Full-Text [PDF 1234 kb]   (3336 Downloads)    
Article Type: Original Research | Subject: Internal Combustion Engine
Received: 2018/03/16 | Accepted: 2019/02/12 | Published: 2019/10/22

References
1. Yao M, Liu H, Feng X. The development of low-carbon vehicles in China. Energy Policy. 2011;39(9):5457-5464. [Link] [DOI:10.1016/j.enpol.2011.05.017]
2. Ruter MD, Olsen DB, Scotto MV, Perna MA. NOx reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization. Fuel. 2012;91(1):298-306. [Link] [DOI:10.1016/j.fuel.2011.06.072]
3. Aslam MU, Masjuki HH, Kalam MA, Abdesselam H, Mahlia TMI, Amalina MA. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel. 2006;85(5-6):717-724. [Link] [DOI:10.1016/j.fuel.2005.09.004]
4. Economides MJ, Wood DA. The state of natural gas. Journal of Natural Gas Science and Engineering. 2009;1(1-2):1-13. [Link] [DOI:10.1016/j.jngse.2009.03.005]
5. Czerwinski J, Heeb N, Zimmerli Y, Forss AN, Hilfiker T, Bach C. Unregulated emissions with TWC, gasoline & CNG. SAE International Journal of Engines. 2010;3(1):1099-1112. [Link] [DOI:10.4271/2010-01-1286]
6. Yu X, Liu Z, Wang Z, Dou H. Optimize combustion of compressed natural gas engine by improving in-cylinder flows. International Journal of Automotive Technology. 2013;14(4):539-549. [Link] [DOI:10.1007/s12239-013-0058-3]
7. Zhao H, editor. Advanced direct injection combustion engine technologies and development: Gasoline and gas engines. Boca Raton: Elsevier; 2014. [Link]
8. Mc Taggart-Cowan GP, Rogak SN, Munshi SR, Hill PG, Bushe WK. The influence of fuel composition on a heavy-duty, natural-gas direct-injection engine. Fuel. 2010;89(3):752-759. [Link] [DOI:10.1016/j.fuel.2009.10.007]
9. Pischinger S, Umierski M, Hüchtebrock B. New CNG concepts for passenger cars: High torque engines with superior fuel consumption. SAE International. 2003 Jun:2003-01-2264. [Link] [DOI:10.4271/2003-01-2264]
10. Middleton A, Neumann B, Khatri D. Development of dedicated CNG engine with multipoint gas injection system. The Automotive Research Association of India. 2008 Jan:2008-28-0014. [Link] [DOI:10.4271/2008-28-0014]
11. Kato K, Igarashi K, Masuda M, Otsubo K, Yasuda A, Takeda K, et al. Development of engine for natural gas vehicle. SAE International. 1999 Mar:1999-01-0574. [Link] [DOI:10.4271/1999-01-0574]
12. Reynolds CCO, Evans RL, Andreassi L, Cordiner S, Mulone V. The effect of varying the injected charge stoichiometry in a partially stratified charge natural gas engine. SAE International. 2005 Apr:2005-01-0247. [Link] [DOI:10.4271/2005-01-0247]
13. Hu C, Hou S. Investigations on combustion process of low-pressure CNG compound direct injection spark-ignited engines. SAE International. 2010 Sep:2010-32-0052. [Link] [DOI:10.4271/2010-32-0052]
14. Kalam MA, Masjuki HH, Mahlia TM, Fuad MA, Halim K, Ishak A, et al. Experimental test of a new compressed natural gas engine with direct injection. SAE International. 2009 Jun:2009-01-1967. [Link] [DOI:10.4271/2009-01-1967]
15. Seboldt D, Lejsek D, Bargende M. Injection strategies for low HC raw emissions in SI engines with CNG direct injection. Automotive and Engine Technology. 2016;1(1-4):81-91. [Link] [DOI:10.1007/s41104-016-0002-4]
16. Erfan I, Chitsaz I, Ziabasharhagh M, Hajialimohammadi AR, Fleck B. Injection characteristics of gaseous jet injected by a single-hole nozzle direct injector. Fuel. 2015;160:24-34. [Link] [DOI:10.1016/j.fuel.2015.07.037]
17. Reynolds C. Performance of a partially stratified-charge natural gas engine [Dissertation]. Vancouver: The University of British Columbia; 2001. [Link]
18. Arcoumanis C, Hull DR, Whitelaw JH. Optimizing local charge stratification in a lean-burn spark ignition engine. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 1997;211(2):145-154. [Link] [DOI:10.1243/0954407971526317]
19. Bai YL, Wang JX, Wang Z, Shuai SJ. Knocking suppression by stratified stoichiometric mixture with two-zone homogeneity in a DISI engine. Journal of Engineering for Gas Turbines and Power. 2012;135(1):012803. [Link] [DOI:10.1115/1.4005113]
20. Deschamps B, Snyder R, Baritaud T. Effect of flow and gasoline stratification on combustion in a 4-valve SI engine. SAE International. 1994 Oct:941993. [Link] [DOI:10.4271/941993]
21. Kuwahara K, Watanabe T, Takemura J, Omori S, Kume T, Ando H. Optimization of in-cylinder flow and mixing for a center-spark four-valve engine employing the concept of barrel-stratification. SAE International. 1994 Mar:940986. [Link] [DOI:10.4271/940986]
22. Kiyota Y, Akishino K, Ando H. Concept of lean combustion by barrel-stratification. SAE International. 1992 Feb:920678. [Link] [DOI:10.4271/920678]
23. Andreassi L, Cordiner S, Mulone V, Reynolds C, Evans RL. Numerical-experimental comparison of the performance of a partially stratified charge natural gas fuelled engine. ASME 2004 Internal Combustion Engine Division Fall Technical Conference, October 24-27, 2004, Long Beach, California, USA. New York: ASME; 2004. p. 347-361. [Link] [DOI:10.1115/ICEF2004-0912]
24. Costa M, Sorge U, Merola S, Irimescu A, La Villetta M, Rocco V. Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission. Energy. 2016;117(Pt 2):405-415. [Link] [DOI:10.1016/j.energy.2016.03.065]
25. Reynolds CCOB, Evans RL. Improving emissions and performance characteristics of lean burn natural gas engines through partial stratification. International Journal of Engine Research. 2004;5(1):105-114. [Link] [DOI:10.1243/146808704772914282]
26. Reynolds C. Performance of a partially stratified-charge natural gas engine [Dissertation]. Canada: University of British Columbia; 2002. [Link]
27. Heywood J. Internal combustion engine fundamentals. New York: McGraw-Hill Education; 1988. [Link]
28. Baloo M, Mollaei Dariani B, Akhlaghi M, Chitsaz I. Effect of iso-octane/methane blend on laminar burning velocity and flame instability. Fuel. 2015;144:264-273. [Link] [DOI:10.1016/j.fuel.2014.11.043]
29. Varde KS, Asar GMM. Burn rates in natural gas fueled single cylinder spark ignition engine. The Automotive Research Association of India. 2001 Nov:2001-28-0023. [Link] [DOI:10.4271/2001-28-0023]
30. Schmitt M, Hu R, Wright YM, Soltic P, Boulouchos K. Multiple cycle LES simulations of a direct injection natural gas engine. Flow, Turbulence and Combustion. 2015;95(4):645-68. [Link] [DOI:10.1007/s10494-015-9625-1]
31. Yadollahi B, Boroomand M. A numerical investigation of combustion chamber geometry effects on natural gas direct injection properties in a SI engine with centrally mounted multi-hole injector. ASME 2012 Internal Combustion Engine Division Spring Technical Conference, May 6-9, 2012, Torino, Piemonte, Italy. New York: ASME; 2012. p. 797-808. [Link] [DOI:10.1115/ICES2012-81153]
32. Yadollahi B, Boroomand M. The effect of combustion chamber geometry on injection and mixture preparation in a CNG direct injection SI engine. Fuel. 2013;107:52-62. [Link] [DOI:10.1016/j.fuel.2013.01.004]
33. Yadollahi B, Boroomand M. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine. Thermal Science. 2014;18(1):39-52. [Link] [DOI:10.2298/TSCI120605222Y]
34. Baratta M, Catania AE, Spessa E, Herrmann L, Roessler K. Multi-dimensional modeling of direct natural-gas injection and mixture formation in a stratified-charge SI engine with centrally mounted injector. SAE International Journal of Engines. 2009;1(1):607-626. [Link] [DOI:10.4271/2008-01-0975]
35. Kim GH, Kirkpatrick A, Mitchell C. Computational modeling of natural gas injection in a large bore engine. Journal of Engineering for Gas Turbines and Power. 2004;126(3):656-664. [Link] [DOI:10.1115/1.1762906]
36. Scarcelli R, Kastengren AL, Powell CF, Wallner T, Matthias NS. High-pressure gaseous injection: A comprehensive analysis of gas dynamics and mixing effects. ASME 2012 Internal Combustion Engine Division Fall Technical Conference, September 23-26, 2012, Vancouver, BC, Canada. New York: ASME; 2012. p. 793-801. [Link] [DOI:10.1115/ICEF2012-92137]
37. Scarcelli R, Wallner T, Matthias N, Salazar V, Kaiser S. Numerical and optical evolution of gaseous jets in direct injection hydrogen engines. SAE International. 2011 Apr:2011-01-0675. [Link] [DOI:10.4271/2011-01-0675]
38. Rogers TJ. Mixture preparation of gaseous fuels for internal combustion engines using optical diagnostics [Dissertation]. Bundoora: RMIT University; 2014. [Link]
39. Rogers T, Petersen P, Koopmans L, Lappas P, Boretti A. Structural characteristics of hydrogen and compressed natural gas fuel jets. International Journal of Hydrogen Energy. 2015;40(3):1584-1597. [Link] [DOI:10.1016/j.ijhydene.2014.10.140]
40. AVL. AVL Fire User Manual, Fire CFD Solver. Version 2013. [Internet]. Austria: AVL; 2013 [Unknown cited]. Available from: Not Found [Link]
41. Colin O, Benkenida A, Angelberger C. 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines. Oil & Gas Science and Technology. 2003;58(1):47-62. [Link] [DOI:10.2516/ogst:2003004]
42. Durbin PA. Near-wall turbulence closure modeling without "damping functions". Theoretical and Computational Fluid Dynamics. 1991;3(1):1-13. [Link]
43. Hanjalić K, Popovac M, Hadžiabdić M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow. 2004;25(6):1047-1051. [Link] [DOI:10.1016/j.ijheatfluidflow.2004.07.005]
44. Messner D, Wimmer A, Gerke U, Gerbig F. Application and validation of the 3D CFD method for a hydrogen fueled IC engine with internal mixture formation. SAE International. 2006 Apr:2006-01-0448. [Link] [DOI:10.4271/2006-01-0448]
45. Baratta M, Catania AE, Pesce FC. Multidimensional modeling of natural gas jet and mixture formation in direct injection spark ignition engines-development and validation of a virtual injector model. Journal of Fluids Engineering. 2011;133(4):041304. [Link] [DOI:10.1115/1.4003877]
46. Li Y, Kirkpatrick A, Mitchell C, Willson B. Characteristic and computational fluid dynamics modeling of high-pressure gas jet injection. Journal of Engineering for Gas Turbines and Power. 2004;126(1):192-197. [Link] [DOI:10.1115/1.1635398]
47. Abraham J. What is adequate resolution in the numerical computations of transient jets?. SAE International. 1997 Feb:970051. [Link] [DOI:10.4271/970051]
48. Ewan BCR, Moodie K. Structure and velocity measurements in underexpanded jets. Combustion Science and Technology. 1986;45(5-6):275-288. [Link] [DOI:10.1080/00102208608923857]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.