Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2771-2780 | Back to browse issues page

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzakhani S, Javanbakht M. Finite Element Analysis of Phase Field Equations for Martensitic Phase Transformations at the Nanoscale. Modares Mechanical Engineering 2019; 19 (11) :2771-2780
URL: http://mme.modares.ac.ir/article-15-18439-en.html
1- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran
2- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran , javanbakht@cc.iut.ac.ir
Abstract:   (3176 Views)
In the present work, the nonlinear finite element method is used to solve the phase field equations for phase transformations at the nanoscale. In the phase field theory, the evolution of a martensitic nanostructure is described in terms of several order parameters and the Ginzburg-Landau equation is a linear relationship between the of the change rate of an order parameter and the thermodynamic forces which are the variational derivative of the free energy of the system with respect to the order parameter. Since the free energy includes nonlinear terms of the order parameter, the thermodynamic forces are nonlinear functions of the order parameter. Therefore, the phase field equations are solved using the nonlinear finite element method and the self-developed code. The studied transformation is the conversation of cubic to tetragonal phase in NiAl by temperature changes and neglecting the mechanical effects. Therefore, the transformation is the induction temperature type and is defined using only one order parameter. To validate the numerical work, the profile, width, energy, and velocity of the austenite- martensite interface were calculated and compared to the previous works and a very good agreement is found between them. Also, various physical problems such as plane interface propagation, martensitic nucleation, and propagation undercooling, and reverse phase transformation under heating are simulated. The obtained results present a proper tool to solve more advanced phase field problems for phase transformations at the nanoscale including mechanics effects and complex initial and boundary conditions.
Article Type: Original Research | Subject: Metal Forming
Received: 2018/04/4 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. Levitas VI, Idesman AV, Olson GB. Continuum modeling of strain-induced martensitic transformation at shear-band intersections. Acta Materialia. 1998;47(1):219-233. [Link] [DOI:10.1016/S1359-6454(98)00314-0]
2. Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T. A new view on transformation induced plasticity (TRIP). International Journal of Plasticity. 2000;16(7-8):723-748. [Link] [DOI:10.1016/S0749-6419(99)00078-9]
3. Olson GB, Hartman H. Martensite and life: displacive transformations as biological processes. Le Journal de Physique Colloques. 1982;43(C4):PC4855-65. [Link] [DOI:10.1051/jphyscol:19824140]
4. Levitas VI, Idesman AV, Olson GB, Stein OE. Numerical modelling of martensitic growth in an elastoplastic material. Philosophical Magazine A. 2002;82(3):429-462. [Link] [DOI:10.1080/01418610208239609]
5. Bil C, Massey K, Abdullah EJ. Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures. 2013;24(7):879-898. [Link] [DOI:10.1177/1045389X12471866]
6. Levitas VI, Warren JA. Phase field approach with anisotropic interface energyand interface stresses: large strain formulation. Journal of the Mechanics and Physics of Solids. 2016;91:94-125. [Link] [DOI:10.1016/j.jmps.2016.02.029]
7. Finel A, Le Bouar Y, Gaubert A, Salman U. Phase field methods: microstructures, mechanical properties and complexity. Comptes Rendus Physique. 2010;11(3-4):245-256. [Link] [DOI:10.1016/j.crhy.2010.07.014]
8. Levitas VI, Preston DL, Lee DW. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Physical Review B. 2003;68(134201):1-24. [Link] [DOI:10.1103/PhysRevB.68.134201]
9. Levitas VI, Idesman AV, Preston DL. Microscale simulation of martensitic microstructure evolution. Physical Review Letters. 2004;93(10):105701. [Link] [DOI:10.1103/PhysRevLett.93.105701]
10. Wang Y, Khachaturyan AG. Multi-scale phase field approach to martensitic transformations. Materials Science and Engineering: A. 2006;438:55-63. [Link] [DOI:10.1016/j.msea.2006.04.123]
11. Zhang W, Jin YM, Khachaturyan AG. Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta Materialia. 2007;55(2):565-574. [Link] [DOI:10.1016/j.actamat.2006.08.050]
12. Levitas VI, Javanbakht M. Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. International Journal of Materials Research. 2011;102(2):652-665. [Link] [DOI:10.3139/146.110529]
13. Levitas VI, Lee DW, Preston DL. Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. International Journal of Plasticity. 2010;26(3):395-422. [Link] [DOI:10.1016/j.ijplas.2009.08.003]
14. Seol DJ, Hu SY, Li YL, Chen LQ, Oh KH. Computer simulation of martensitic transformation in constrained films.  Materials Science Forum. 2002;408(2):1645-1650. [Link] [DOI:10.4028/www.scientific.net/MSF.408-412.1645]
15. Levitas VI, Idesman AV, Stein E. Finite element simulation of martensitic phase transitions in elastoplastic materials. International Journal of Solids and Structures. 1998;35(9-10):855-887. [Link] [DOI:10.1016/S0020-7683(97)00088-7]
16. Saxena A, Wu Y, Lookman T, Shenoy SR, Bishop AR. Hierarchical pattern formation in elastic materials. Physica A: Statistical Mechanics and its Applications. 1997;239(1-3):18-34. [Link] [DOI:10.1016/S0378-4371(96)00469-4]
17. Wang Y, Khachaturyan AG. Three-dimensional field model and computer simulation of martensitic transformation. Acta Materialia. 1997;45(2):759-773. [Link] [DOI:10.1016/S1359-6454(96)00180-2]
18. Levitas VI. Phase-field theory for martensitic phase transformations at large strains. International Journal of Plasticity. 2013;49:85-118. [Link] [DOI:10.1016/j.ijplas.2013.03.002]
19. Levitas VI, Levin VA, Zingerman KM, Freiman EI. Displacive phase transitions at large strains: phase-field theory and simulations. Physical Review Letters. 2009;103(2):025702 [Link] [DOI:10.1103/PhysRevLett.103.025702]
20. Chen LQ, Shen J. Applications of semi-implicit Fourierspectral method to phase field equations. Computer Physics Communications. 1998;108(2-3):147-158. [Link] [DOI:10.1016/S0010-4655(97)00115-X]
21. Yamanaka A, Takaki T, Tomita Y. Elastoplastic phase-field simulation of self- and plastic accommodations in martensitic transformation. Materials Science and Engineering: A. 2008;491(1-2):378-384. [Link] [DOI:10.1016/j.msea.2008.02.035]
22. Mahapatra DR, Melnik RVN. Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau-Ginzburg free energy model. Mechanics of Advanced Materials and Structures. 2006;13(6):443-455. [Link] [DOI:10.1080/15376490600862863]
23. Cho JY, Idesman AV, Levitas VI, Park T. Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg-Landau theory. International Journal of Solids and Structures. 2012;49(14):1973-1992. [Link] [DOI:10.1016/j.ijsolstr.2012.04.008]
24. Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation. International Journal of Plasticity. 2009;25(2):239-280. [Link] [DOI:10.1016/j.ijplas.2008.02.004]
25. Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples. International Journal of Plasticity. 2009;25(3):546-583. [Link] [DOI:10.1016/j.ijplas.2008.02.005]
26. Levitas VI, Javanbakht M. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Physical Review Letters. 2010;105(16):165701. [Link] [DOI:10.1103/PhysRevLett.105.165701]
27. Saitoh KI, Liu WK. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science. 2009;46(2):531-544. [Link] [DOI:10.1016/j.commatsci.2009.04.025]
28. Levitas VI. Phase-field theory for martensitic phase transformations at large strains. International Journal of Plasticity. 2013;49:85-118. [Link] [DOI:10.1016/j.ijplas.2013.03.002]
29. Levitas VI, Warren JA. Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses. Physical Review B. 2015;92(14):144106. [Link] [DOI:10.1103/PhysRevB.92.144106]
30. Levitas VI. Phase field approach to martensitic phase transformations with large strains and interface stresses. Journal of the Mechanics and Physics of Solids. 2014;70:154-189. [Link] [DOI:10.1016/j.jmps.2014.05.013]
31. Javanbakht M, Barati E. Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Computational Materials Science. 2016;115:137-144. [Link] [DOI:10.1016/j.commatsci.2015.10.037]
32. Christian JW, Mahajan S. Deformation twinning. Progress in Materials Science. 1995;39(1-2):1-157. [Link] [DOI:10.1016/0079-6425(94)00007-7]
33. Levitas VI, Javanbakht M. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale. 2014;6(1):162-166. [Link] [DOI:10.1039/C3NR05044K]
34. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. Application of phase field microelasticity theory of phase transformations to dislocation dynamics: model and three-dimensional simulations in a single crystal. Philosophical Magazine Letters. 2001;81(6):385-393. [Link] [DOI:10.1080/09500830110044564]