Volume 19, Issue 1 (January 2019)                   Modares Mechanical Engineering 2019, 19(1): 125-135 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri M. Investigation and Sensitivity Analysis of Dimensional Parameters and Velocity in the 3D Nanomanipulation Dynamics of Carbon Nanotubes Using Statistical Sobol Method. Modares Mechanical Engineering 2019; 19 (1) :125-135
URL: http://mme.modares.ac.ir/article-15-18936-en.html
*Mechanical Engineering Department, Engineering Faculty, Arak University, Arak, Iran , m-taheri@araku.ac.ir
Abstract:   (4063 Views)
Critical force and time are the two important output parameters in nanomanipulation of different particles. Various input parameters affect the critical force and time, among which dimensional parameters and velocity can be considered the most important ones. To accurately calculate the critical forces and time of the manipulation requires careful analysis of the effect of various input parameters. One of the new methods in affecting the sensitivity analysis of input parameters on problems are statistical sensitivity analysis methods, one of the most accurate methods of which is the Sobol method. Previously, research on the influence of various parameters on the 2D manipulation has been done. In this paper, for the first time, using Sobol statistical sensitivity analysis method, effects of various dimensional parameters, including length of cantilever, width of cantilever, thickness of cantilever, height of tip, the speed in direction of the x  and y-axes, radius of the particle, radius of the tip needle, and length of particle have been studied on 8 output parameters, including critical force of sliding along the x-axis, rolling around the x-axis, sliding along the y-axis, rolling around the y-axis, and critical time of sliding along the x-axis, rolling around the x-axis, sliding along the y-axis,  and rolling around the y-axis in 3D manipulation. The final obtained results demonstrate that “cantilever thickness” and “cantilever length” are the most influential parameters on critical forces, and “tip height” and “cantilever thickness” are the most influential ones on critical times.
Full-Text [PDF 2226 kb]   (2953 Downloads)    
Article Type: Original Research | Subject: Micro & Nano Systems
Received: 2018/04/14 | Accepted: 2018/10/6 | Published: 2019/01/1

1. 1- Li G, Xi N, Yu M, Fung WK. Development of augmented reality system for AFM-based nanomanipulation. IEEE/ASME Transactions on Mechatronics. 2004;9(2):358-365. [Link] [DOI:10.1109/TMECH.2004.828651]
2. Li G, Xi N, Chen H, Saeed A, Yu M. Assembly of nanostructure using AFM based nanomanipulation system. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 26 April - 1 May, 2004, New Orleans LA, USA. Piscataway: IEEE; 2004. [Link]
3. Moradi M, Fereidon AH, Sadeghzadeh S. Aspect ratio and dimension effects on nanorod manipulation by atomic force microscope. IET Micro & Nano Letters. 2010;5(5):324-327. [Link] [DOI:10.1049/mnl.2010.0099]
4. El Rifai K, El Rifai O, Youcef-Toumi K. Modeling and control of AFM-based nano-manipulation systems. Proceedings of IEEE International Conference on Robotics and Automation, 18-22 April, 2005, Barcelona, Spain. Piscataway: IEEE; 2005. [Link]
5. Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ. Imaging and manipulation of biological structures with the AFM. Micron. 2002;33(4):385-397. [Link] [DOI:10.1016/S0968-4328(01)00026-9]
6. Mahboobi SH, Taheri AR, Nejat Pishkenari H, Meghdari A, Hemmat M. Cellular injection using carbon nanotube: A molecular dynamics study. Nano. 2015;10(02):1550025. [Link] [DOI:10.1142/S1793292015500253]
7. Sadeghzadeh S, Khatibi MM. Vibrational modes and frequencies of borophene in comparison with graphene nanosheets. Superlattices and Microstructures. 2018;117:271- 282. [Link] [DOI:10.1016/j.spmi.2018.03.059]
8. Sadeghzadeh S, Rezapour N. Thermal conductivity of porous graphene nanoribbon implemented in mass detection operations. Modares Mechanical Engineering. 2016;16(1):345-352. [Persian] [Link]
9. Korayem MH, Taheri M, Zakeri M. Sensitivity analysis of nanoparticles manipulation based on different friction models. Applied Surface Science. 2012;258(18):6713-6722. [Link] [DOI:10.1016/j.apsusc.2011.12.024]
10. Korayem MH, Taheri M, Korayem AH, Rastegar Z. Sensitivity analysis of coulomb and HK friction models in 2D AFM-based nano-manipulation: Sobol method. International Journal of Nanoscience and Nanotechnology. 2015;11(1):23-31. [Link]
11. Korayem MH, Taheri M, Ghasemi M, Badkoobehhezavh H. Investigating the effective parameters in the atomic force microscope-based dynamic manipulation of rough micro/nanoparticles by using the Sobol sensitivity analysis method. Simulation. 2015;91(12):1068-1080. [Link] [DOI:10.1177/0037549715615216]
12. Zakeri M, Kharazmi M. Modeling of friction in micro/nano scale with random roughness distribution. Modares Mechanical Engineering. 2015;14(11):175-184. [Persian] [Link]
13. Zakeri M, Faraji J. Dynamic modeling of nano/microparticles displacement with multi-point contact based on the Rumpf model. Modares Mechanical Engineering. 2016;16(8):120-130. [Persian] [Link]
14. Korayem MH, Saraee MB, Mahmoodi Z, Dehghani S. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM. Journal of Nanoparticle Research. 2015;17:439. [Link] [DOI:10.1007/s11051-015-3240-x]
15. Saraee MB, Korayem MH. Dynamic modeling and simulation of 3D manipulation on rough surfaces based on developed adhesion models. The International Journal of Advanced Manufacturing Technology. 2017;88(1-4):529-545. [Link] [DOI:10.1007/s00170-016-8786-y]
16. Babahosseini H, Mahboobi SH, Meghdari A. Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models. ASME International Mechanical Engineering Congress and Exposition, November 13-19, 2009, Lake Buena Vista, Florida, USA. New York City: ASME; 2009. [Link] [DOI:10.1115/IMECE2009-11071]
17. Babahosseini H, Mahboobi SH, Khorsand Vakilzadeh M, Alasty A, Meghdari A. Optimal sliding mode control for atomic force microscope tip positioning during nano-manipulation process. Scientia Iranica Transaction F Nanotechnology. 2013;20(6):2285-2296. [Link]
18. Taheri M. 3D-dynamic modeling and simulation of biological nanoparticle motion using AFM nano-robot. Modares Mechanical Engineering. 2016;15(12):311-316. [Persian] [Link]
19. Taheri M. 3D modeling of nanoparticle manipulation in air using HK friction model. Modares Mechanical Engineering. 2016;16(10):275-282. [Persian] [Link]
20. Taheri M. Manipulation dynamic modeling for micro/nano-devices manufacturing using the LuGre friction model. Iranian Journal of Manufacturing Engineering. 2016;3(2):45-53. [Persian] [Link]
21. Taheri M. Sensitivity analysis of 3D manipulation of spherical nanoparticles by using E-fast method. Modares Mechanical Engineering. 2018;17(11):59-69. [Persian] [Link]
22. Saltelli A, Chan K, Scott EM, editors. Sensitivity analysis: Gauging the worth of scientific models. Hoboken: Wiley; 2000. pp. 1-70. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.