Volume 19, Issue 9 (September 2019)                   Modares Mechanical Engineering 2019, 19(9): 2273-2283 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanzadeh R, Azdast T, Doniavi A, Darvishi M. Estimating the Thermal Conductivity of Polymeric Foams Based on a Theoretical Model Using Cell Size and Foam Density. Modares Mechanical Engineering 2019; 19 (9) :2273-2283
URL: http://mme.modares.ac.ir/article-15-19082-en.html
1- Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
2- Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran , a.doniavi@urmia.ac.ir
3- Mechanical Department, Faculty of Engineering, Payame Noor University, Tehran, Iran
Abstract:   (5174 Views)
Heat transfer of polymeric foams is consisting of three different mechanisms including heat transfer through a solid phase, gas phase, and thermal radiation. Thermal insulation properties of polymeric foams are affected by different structural properties. Also, these structural properties have a different influence on the different heat transfer’s mechanisms. Therefore, it is necessary to use theoretical models. Several theoretical models have been presented so far, meanwhile, providing theoretical models that can estimate the thermal conductivity using the easiest measurable properties along with sufficient accuracy and reliability can be very helpful. In this regard in the present study, a theoretical model based on cell size and foam density is developed in order to predict the thermal properties of polymeric foams. It was concluded that the error of the developed theoretical model is lower than 8% in comparison to the experimental results. In the following, the effect of most important structural parameters i.e. foam density and cell size on the thermal conductivity is investigated. Based on the results, determining the optimum density is necessary to achieve the lowest thermal conductivity. Also, the gas thermal conduction has the most contribution to the overall thermal conductivity and achieving the nanometer cell sizes can be useful in order to decrease it.
Full-Text [PDF 889 kb]   (2756 Downloads)    
Article Type: Original Research | Subject: Elasticity
Received: 2018/04/17 | Accepted: 2019/02/12 | Published: 2019/09/1

1. Yazdanpanah H, Farshidianfar A, Ahmadpour A, Faezian A, Mokhtari F. Production method and analysis of the acoustic and mechanical properties of soft polyurethane foam reinforced by nano-alumina particles. Modares Mechanical Engineering. 2016;16(7):261-266. [Persian] [Link]
2. Ramezani Kakroodi A, Kazemi Y, Ding WD, Ameli A, Park CB. Poly (lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromolecules. 2015;16(12):3925-3935. [Link] [DOI:10.1021/acs.biomac.5b01253]
3. Pinto J, Notario B, Verdejo R, Dumon M, Costeux S, Rodriguez-Perez MA. Molecular confinement of solid and gaseous phases of self-standing bulk nanoporous polymers inducing enhanced and unexpected physical properties. Polymer. 2017;113:27-33. [Link] [DOI:10.1016/j.polymer.2017.02.046]
4. Ranaweera CK, Ionescu M, Bilic N, Wan X, Kahol PK, Gupta RK. Biobased polyols using thiol-ene chemistry for rigid polyurethane foams with enhanced flame-retardant properties. Journal of Renewable Materials. 2017;5 Suppl 1:1-12. [Link] [DOI:10.7569/JRM.2017.634105]
5. Xiang A, Li Y, Fu L, Chen Y, Tian H, Varada Rajulu A. Thermal degradation and flame retardant properties of isocyanate-based flexible polyimide foams with different isocyanate indices. Thermochimica Acta. 2017;652:160-165. [Link] [DOI:10.1016/j.tca.2017.03.019]
6. Lee RE, Hasanzadeh R, Azdast T. A multi-criteria decision analysis on injection moulding of polymeric microcellular nanocomposite foams containing multi-walled carbon nanotubes. Plastics Rubber and Composites. 2017;46(4):155-162. [Link] [DOI:10.1080/14658011.2017.1300210]
7. Ameli A, Jahani D, Nofar M, Jung PU, Park CB. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Composites Science and Technology. 2014;90:88-95. [Link] [DOI:10.1016/j.compscitech.2013.10.019]
8. Matuana LM, Park CB, Balatinecz JJ. Processing and cell morphology relationships for microcellular foamed PVC/wood‐fiber composites. Polymer Engineering and Science. 1997;37(7):1137-1147. [Link] [DOI:10.1002/pen.11758]
9. Nofar MR, Park CB. Poly (lactic acid) foaming. Progress in Polymer Science. 2014;39(10):1721-1741. [Link] [DOI:10.1016/j.progpolymsci.2014.04.001]
10. International Energy Agency. Key world energy statistics. Paris: International Energy Agency; 2015. [Link]
11. National Energy Board. Canadian energy overview 2014 [Internet]. Calgary: National Energy Board; 2014 [cited 2018 Apr 08]. Available from: http://bit.ly/2WSYDJ3 [Link]
12. Notario B, Pinto J, Solorzano E, De Saja JA, Dumon M, Rodríguez-Pérez MA. Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer. 2015;56:57-67. [Link] [DOI:10.1016/j.polymer.2014.10.006]
13. Gong P, Buahom P, Tran MP, Saniei M, Park CB, Pötschke P. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon. 2015;93:819-829. [Link] [DOI:10.1016/j.carbon.2015.06.003]
14. Prociak A, Pielichowski J, Sterzynski, T. Thermal diffusivity of rigid polyurethane foams blown with different hydrocarbons. Polymer Testing. 2000;19(6):705-712. [Link] [DOI:10.1016/S0142-9418(99)00042-2]
15. Montzka SA, Butler JH, Elkins JW, Thompson TM, Clarke AD, Lock LT. Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature. 1999;398:690-694. [Link] [DOI:10.1038/19499]
16. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science. 2015;41:122-145. [Link] [DOI:10.1016/j.progpolymsci.2014.07.001]
17. Alvarez‐Lainez M, Rodriguez‐Perez MA, De Saja JA. Thermal conductivity of open‐cell polyolefin foams. Journal of Polymer Science Part B Polymer Physics. 2008;46(2):212-221. [Link] [DOI:10.1002/polb.21358]
18. Schellenberg J, Wallis M. Dependence of thermal properties of expandable polystyrene particle foam on cell size and density. Journal of Cellular Plastics. 2010;46(3):209-222. [Link] [DOI:10.1177/0021955X09350803]
19. Reglero Ruiz JA, Saiz‐Arroyo C, Dumon M, Rodríguez‐Perez MA, Gonzalez L. Production, cellular structure and thermal conductivity of microcellular (methyl methacrylate)-(butyl acrylate)-(methyl methacrylate) triblock copolymers. Polymer International. 2011;60(1):146-152. [Link] [DOI:10.1002/pi.2931]
20. Arduini-Schuster M, Manara J, Vo C. Experimental characterization and theoretical modeling of the infrared-optical properties and the thermal conductivity of foams. International Journal of Thermal Sciences. 2015;98:156-164. [Link] [DOI:10.1016/j.ijthermalsci.2015.07.015]
21. Wang G, Zhao J, Wang G, Mark LH, Park CB, Zhao G. Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal. 2017;95:382-393. [Link] [DOI:10.1016/j.eurpolymj.2017.08.025]
22. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, et al. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. European Polymer Journal. 2018;98:1-10. [Link] [DOI:10.1016/j.eurpolymj.2017.11.001]
23. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW. Correlation between structure and thermal conductivity of organic aerogels. Journal of Non Crystalline Solids. 1995;188(3):226-234. [Link] [DOI:10.1016/0022-3093(95)00191-3]
24. Campo‐Arnáiz RA, Rodríguez‐Pérez MA, Calvo B, De Saja JA. Extinction coefficient of polyolefin foams. Journal of Polymer Science Part B Polymer Physics. 2005;43(13):1608-1617. [Link] [DOI:10.1002/polb.20435]
25. Placido E, Arduini-Schuster MC, Kuhn J. Thermal properties predictive model for insulating foams. Infrared Physics & Technology. 2005;46(3):219-231. [Link] [DOI:10.1016/j.infrared.2004.04.001]
26. Kaemmerlen A, Vo C, Asllanaj F, Jeandel G, Baillis D. Radiative properties of extruded polystyrene foams: Predictive model and experimental results. Journal of Quantitative Spectroscopy and Radiative Transfer. 2010;111(6):865-877. [Link] [DOI:10.1016/j.jqsrt.2009.11.018]
27. Hilyard NC, Cunningham A, editors. Low density cellular plastics: Physical basis of behaviour. Dordrecht: Springer Science & Business Media; 2012. [Link]
28. Wang G, Wang C, Zhao J, Wang G, Park CB, Zhao G. Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material. Nanoscale. 2017;9(18):5996-6009. [Link] [DOI:10.1039/C7NR00327G]
29. Ferkl P, Pokorný R, Bobák M, Kosek J. Heat transfer in one-dimensional micro- and nano-cellular foams. Chemical Engineering Science. 2013;97:50-58. [Link] [DOI:10.1016/j.ces.2013.04.018]
30. Notario B, Pinto J, Rodríguez-Pérez MA. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer. 2015;63:116-126. [Link] [DOI:10.1016/j.polymer.2015.03.003]
31. Okolieocha C, Raps D, Subramaniam K, Altstädt V. Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - a review. European Polymer Journal. 2015;73:500-519. [Link] [DOI:10.1016/j.eurpolymj.2015.11.001]
32. Costeux S. CO2‐blown nanocellular foams. Journal of Applied Polymer Science. 2014;131(23):41293. [Link] [DOI:10.1002/app.41293]
33. Gong P, Wang G, Tran MP, Buahom P, Zhai S, Li G, Park CB. Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon. 2017;120:1-10. [Link] [DOI:10.1016/j.carbon.2017.05.029]
34. Kerker M. The scattering of light and other electromagnetic radiation. New York: Elsevier; 2016. [Link]
35. Glicksman L, Schuetz M, Sinofsky M. Radiation heat transfer in foam insulation. International Journal of Heat and Mass Transfer. 1987;30(1):187-197. [Link] [DOI:10.1016/0017-9310(87)90071-8]
36. Tseng CJ, Kuo KT. Thermal radiative properties of phenolic foam insulation. Journal of Quantitative Spectroscopy and Radiative Transfer. 2002;72(4):349-359. [Link] [DOI:10.1016/S0022-4073(01)00129-7]
37. Daryadel M, Azdast T, Hasanzadeh R, Molani S. Simultaneous decision analysis on the structural and mechanical properties of polymeric microcellular nanocomposites foamed using CO2. Journal of Applied Polymer Science. 2018;135(14):46098. [Link] [DOI:10.1002/app.46098]
38. Wong A, Wijnands SFL, Kuboki T, Park CB. Mechanisms of nanoclay-enhanced plastic foaming processes: Effects of nanoclay intercalation and exfoliation. Journal of Nanoparticle Research. 2013;15:1815. [Link] [DOI:10.1007/s11051-013-1815-y]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.