1. Arcidiacono PJ. A method for computation of the induced velocity field of a rotor in forward flight, suitable for application to tandem rotor configurations. Journal of the American Helicopter Society. 1964;9(3):34-45. [
Link] [
DOI:10.4050/JAHS.9.34]
2. Bramwell ARS, Balmford D, Done G. Bramwell's helicopter dynamics. Oxford UK: Butterworth-Heinemann; 2001. pp. 1-32. [
Link] [
DOI:10.1016/B978-075065075-5/50004-X]
3. Gordon Leishman J. Principles of helicopter aerodynamics. New York: Cambridge University Press; 2006. pp. 174-185. [
Link]
4. Perdomo O, Wei FSJ. On the flapping motion of a helicopter blade. Applied Mathematical Modelling. 2017;46:299-311. [
Link] [
DOI:10.1016/j.apm.2017.01.055]
5. Seddon J, Newman S. Basic helicopter aerodynamics. Chichester: John Wiley & Sons; 2011. pp. 85-87. [
Link] [
DOI:10.1002/9781119994114]
6. Rogers JP. Applications of an analytic stall model to time‐history and eigenvalue analysis of rotor blades. Journal of the American Helicopter Society. 1984;29(1):25-33. [
Link] [
DOI:10.4050/JAHS.29.25]
7. Majhi JR, Ganguli R. Modeling helicopter rotor blade flapping motion considering nonlinear aerodynamics. Computer Modeling in Engineering and Sciences. 2008;27(1):25-36. [
Link]
8. Chandiramani NK, Plaut RH, Librescu LI. Non-linear flutter of a buckled shear-deformable composite panel in a high-supersonic flow. International Journal of Non Linear Mechanics. 1995;30(2):149-167. [
Link] [
DOI:10.1016/0020-7462(94)00028-9]
9. Librescu L, Chiocchia G, Marzocca P. Implications of cubic physical/aerodynamic non-linearities on the character of the flutter instability boundary. International Journal of Non Linear Mechanics. 2003;38(2):173-199. [
Link] [
DOI:10.1016/S0020-7462(01)00054-3]
10. Patil MJ, Hodges DH. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. Journal of Fluids and Structures. 2004;19(7):905-915. [
Link] [
DOI:10.1016/j.jfluidstructs.2004.04.012]
11. Tang DM, Dowell EH. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures. 2004;19(3):291-306. [
Link] [
DOI:10.1016/j.jfluidstructs.2003.10.007]
12. Cesnik CES, Opoku DG, Nitzsche F, Cheng T. Active twist rotor blade modelling using particle-wake aerodynamics and geometrically exact beam structural dynamics. Journal of Fluids and Structures. 2004;19(5):651-668. [
Link] [
DOI:10.1016/j.jfluidstructs.2004.01.007]
13. Desceliers C, Soize C. Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization. International Journal of Non Linear Mechanics. 2004;39(3):343-368. [
Link] [
DOI:10.1016/S0020-7462(02)00191-9]
14. Popescu B, Hodges DH. Asymptotic treatment of the trapeze effect in finite element cross-sectional analysis of composite beams. International Journal of Non Linear Mechanics. 1999;34(4):709-721. [
Link] [
DOI:10.1016/S0020-7462(98)00049-3]
15. Tongue BH, Flowers G. Non-linear rotorcraft analysis. International Journal of Non Linear Mechanics. 1988;23(3):189-203. [
Link] [
DOI:10.1016/0020-7462(88)90011-X]
16. Vu NA, Lee JW. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology. 2015;42:106-117. [
Link] [
DOI:10.1016/j.ast.2014.10.020]
17. Cai G, Wang B, Chen BM, Lee TH. Design and implementation of a flight control system for an unmanned rotorcraft using RPT control approach. Asian Journal of Control. 2013;5(1):95-119. [
Link] [
DOI:10.1002/asjc.504]
18. Goulos I, Pachidis V, Pilidis P. Lagrangian formulation for the rapid estimation of helicopter rotor blade vibration characteristics. The Aeronautical Journal. 2014;118(1206):861-901. [
Link] [
DOI:10.1017/S000192400000960X]
19. Branlard E, Gaunaa M, Machefaux E. Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt. Journal of Physics: Conference Series. 2014;524: 012124. [
Link] [
DOI:10.1088/1742-6596/524/1/012124]
20. Cameron CG. Performance and loads of a lift offset rotor: Hover and wind tunnel testing. Journal of the American Helicopter Society. 2019;64(2):1-12. [
Link] [
DOI:10.4050/JAHS.64.022002]
21. Friedmann PP. Rotary-wing aeroelasticity: Current status and future trends. AIAA Journal. 2004;42(10):1953-1972. [
Link] [
DOI:10.2514/1.9022]
22. Johnson W. Milestones in rotorcraft aeromechanics: The 30th Alexander A. Nikolsky Honorary lecture. Journal of the American Helicopter Society. 2011;56(3):031001. [
Link] [
DOI:10.4050/JAHS.56.031001]
23. McLean D. Automatic flight control systems. New Jersey: Prentice Hall; 1990. pp. 121-123. [
Link]
24. Sitaraman J, Potsdam M, Wissink A, Jayaraman B, Datta A, Mavriplis D. et al. Rotor loads prediction using helios: A multisolver framework for rotorcraft aeromechanics analysis. Journal of Aircraft. 2013;50(2):478-492. [
Link] [
DOI:10.2514/1.C031897]
25. Van Der Wall BG. Analytical estimate of rotor blade flapping caused by a straight vortex disturbance. Journal of the American Helicopter Society. 2017;62(4):1-6. [
Link] [
DOI:10.4050/JAHS.62.045001]
26. Datta A, Yeo H, Norman TR. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios. Journal of the American Helicopter Society. 2013;58(2):1-17. [
Link] [
DOI:10.4050/JAHS.58.022004]
27. Bennett JAJ. The era of the autogiro. The Aeronautical Journal. 1961;65(610):649-660. [
Link] [
DOI:10.1017/S0368393100075490]
28. Harris FD. Rotor performance at high advance ratio: Theory versus test [Internet]. Washington: NASA; 2008 [cited 2018 July 15]. Available from: https://ntrs.nasa.gov/search.jsp?R=20090005978 [
Link]
29. Ekblad M. Reduced-order modeling and controller design for a high-performance helicopter. Journal of Guidance, Control, and Dynamics. 1990;13(3):439-449. [
Link] [
DOI:10.2514/3.25356]
30. Lee S, Kim H, Lee S. Analysis of aerodynamic characteristics on a counter-rotating wind turbine. Current Applied Physics. 2010;10(2):S339-S342. [
Link] [
DOI:10.1016/j.cap.2009.11.073]
31. Gessow A, Crim AD. An extension of lifting rotor theory to cover operation at large angles of attack and high inflow conditions [Internet]. Langley Field VA: NACA; 1952 [cited 2018 June 14]. Available from: https://ntrs.nasa.gov/search.jsp?R=19930083369 [
Link]
32. Majhi JR, Ganguli R. Helicopter blade flapping with and without small angle assumption in the presence of dynamic stall. Applied Mathematical Modelling. 2010;34(12):3726-3740 [
Link] [
DOI:10.1016/j.apm.2010.02.010]