1. Leishman JG, Beddoes TS. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society. 1989;34(3):3-17. [
Link] [
DOI:10.4050/JAHS.34.3]
2. Larsen JW, Nielsen SRK, Krenk S. Dynamic stall model for wind turbine airfoils. Journal of Fluids and Structures. 2007;23(7):959-982. [
Link] [
DOI:10.1016/j.jfluidstructs.2007.02.005]
3. Mulleners K, Raffel M. Dynamic stall development. Experiments in Fluids. 2013;54:1469. [
Link] [
DOI:10.1007/s00348-013-1469-7]
4. Choudhry A, Leknys R, Arjomandi M, Kelso R. An insight into the dynamic stall lift characteristics. Experimental Thermal and Fluid Science. 2014;58:188-208. [
Link] [
DOI:10.1016/j.expthermflusci.2014.07.006]
5. Leishman JG, Beddoes TS, Westland Helicopter Ltd. A generalized model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington DC, June 1986. Fairfax VA: The Vertical Flight Society; 1986. [
Link]
6. Oye S. Dynamic stall simulated as time lag of separation [Internet]. Lyngby: University of Denmark; 1991 [Unknown cited]. Available from: Not Found [
Link]
7. Hansen MH, Gaunaa M, Aagaard Madsen H. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations [Internet]. Forskningscenter Risoe: DTU Orbit; 2004 [Unknown cited]. Available from: http://bit.ly/2x0sVel [
Link]
8. Wang Q, Zhao Q. Modification of Leishman-Beddoes model incorporating with a new trailing-edge vortex model. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2015;229(9):1606-1615. [
Link] [
DOI:10.1177/0954410014556113]
9. Tran CT, Petot D. Semi-empirical model for dynamic stall of airfoils in view of the application to the calculation of responses of the helicopter blade in forward flight. Sixth European Rotorcraft and Powered Lift Aircraft Forum, September 16-19, 1980, Bristol, England. Vertica. Bristol: University of Bristol; 1980. [
Link]
10. Petot D. Differential equation modeling of dynamic stall. La Recherche Aerospatiale. 1989;5:59-72. [
Link]
11. Tarzanin FJ. Prediction of control loads due to blade stall. Journal of the American Helicopter Society. 1972;17(2):33-46. [
Link] [
DOI:10.4050/JAHS.17.33]
12. Gross DW, Harris FD. Prediction of inflight stalled airloads from oscillating airfoil data. Proceedings of the 25th Annual National Forum of the American Helicopter Society, May 1969. Fairfax VA: The Vertical Flight Society; 1969. [
Link]
13. Gormont RE. A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors. Philadelphia: U.S., Army Air Mobility R&D Laboratory, Vertol Division, (Report on Boieng-Vertol ContracU02-71-C00045) May, 1973. [
Link]
14. Strickland JH, Webster BT, Nguyen T. A vortex model of the darrieus turbine: An analytical and experimental study. Journal of Fluids Engineering. 1979;101(4):500-505. [
Link] [
DOI:10.1115/1.3449018]
15. Paraschivoiu I. Wind turbine design: With emphasis on darrieus concept. Montreal: Presses International Polytechnique; 2002. [
Link]
16. Rasekh S, Hosseinidoust M, Karimian Aliabadi S. Accuracy of dynamic stall response for wind turbine airfoils based on semi-empirical and numerical methods. Journal of Applied Fluid Mechanics. 2018;11(5):1287-1296. [
Link] [
DOI:10.29252/jafm.11.05.28668]
17. Rasekh S, Karimian Aliabadi S, Hosseinidoust M. Comparison of dynamic stall models using numerical and semi-empirical approaches for a wind-turbine airfoil. Modares Mechanical Engineering. 2018;18(3):282-290. [Persian] [
Link]
18. Hibbs BD. HAWT performance with dynamic stall [Internet]. Golden CO: Solar Energy Research Institute; 1986 [Unknown cited]. Available from: https://www.nrel.gov/docs/legosti/old/2732.pdf [
Link] [
DOI:10.2172/5509059]
19. Anderson JD Jr. Fundamentals of aerodynamics. 5th Edition. New York: McGraw-Hill Education; 2010. [
Link]
20. Gordon Leishman J. Principles of helicopter aerodynamics. Cambridge UK: Cambridge University Press; 2000. [
Link]
21. Jones RT. The unsteady lift of a wing of finite aspect ratio [Internet]. Langley Field VA: NACA; 1940 [Unknown cited]. Available from: https://ntrs.nasa.gov/search.jsp?R=19930091758 [
Link]
22. Sadr MH, Badiei D, Shams SH. Modification of boeing-vertol nonlinear aerodynamic model in dynamic stall simulation. Proceedings of The 14th International Conference of Iranian Aerospace Society, Tehran, of March 3-5, 2015. [Persian] [
Link]
23. Liiva J, Davenport F, Gray L, Walton I. Two-dimensional tests of airfoils oscillating near stall [Internet]. USAAVLABS; 1968 [Unknown cited]. Available from: Not Found [
Link]
24. Gupta S, Gordon Leishman J. Dynamic stall modeling of the S809 aerofoil and comparison with experiments. Wind Energy. 2006;9(6):521-547. [
Link] [
DOI:10.1002/we.200]