1. Galletti C, Brunazzi E, Tognotti L. A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels. Chemical Engineering Science. 2008;63(23):5639-5652. [
Link] [
DOI:10.1016/j.ces.2008.08.013]
2. Hamedi Estakhrsar MH, Rafee R. Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels. Applied Mathematical Modelling. 2016;40(2):685-699. [
Link] [
DOI:10.1016/j.apm.2015.08.023]
3. Narimani E, Shahhoseini S. Optimization of vane mist eliminators. Applied Thermal Engineering. 2011;31(2):188-193. [
Link] [
DOI:10.1016/j.applthermaleng.2010.08.031]
4. Wang VI, James PW. Assessment of an eddy-interaction model and its refinements using predictions of droplet deposition in a wave-plate demister. Chemical Engineering Research and Design. 1999;77(8):692-698. [
Link] [
DOI:10.1205/026387699526827]
5. James PW, Azzopardi BJ, Wang Y, Hughes JP. A model for liquid film flow and separation in a wave-plate mist eliminator. Chemical Engineering Research and Design. 2005;83(5):469-477. [
Link] [
DOI:10.1205/cherd.03363]
6. Zhao J, Jin B, Zhong Z. Study of the separation efficiency of a demister vane with response surface methodology. Journal of Hazardous Materials. 2007;147(1-2):363-369. [
Link] [
DOI:10.1016/j.jhazmat.2007.01.046]
7. Kavousi F, Behjat Y, Shahhosseini S. Optimal design of drainage channel geometry parameters in vane demister liquid–gas separators. Chemical Engineering Research and Design. 2013;91(7):1212-1222. [
Link] [
DOI:10.1016/j.cherd.2013.01.012]
8. Venkatesan G, Kulasekharan N, Iniyan S. Influence of turbulence models on the performance prediction of flow through curved vane demisters. Desalination. 2013;329:19-28. [
Link] [
DOI:10.1016/j.desal.2013.09.001]
9. Venkatesan G, Kulasekharan N, Iniyan S. Numerical analysis of curved vane demisters in estimating water droplet separation efficiency. Desalination. 2014;339:40-53. [
Link] [
DOI:10.1016/j.desal.2014.02.013]
10. Venkatesan G, Kulasekharan N, Iniyan S. Design and selection of curved vane demisters using Taguchi based CFD analysis. Desalination. 2014;354:39-52. [
Link] [
DOI:10.1016/j.desal.2014.09.018]
11. ANSYS. ANSYS Fluent Tutorials Release 16.0. [Internet]. Canonsburg: ANSYS; 2014 [cited 2017 September 23]. Available from: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node262.htm [
Link]
12. Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions: Experimental studies of the deformation and breakup process. International Journal of Multiphase Flow. 1995;21(2):151-173. [
Link] [
DOI:10.1016/0301-9322(94)00069-V]
13. O'Rourke PJ, Amsden AA. A spray/wall interaction submodel for the KIVA-3 wall film model. SAE International. 2000;109:281-298. [
Link] [
DOI:10.4271/2000-01-0271]
14. Liang L, Shelburn A, Wang C, Hodgson D, Meeks E. Implementation and validation of spray/wall interaction models in immersed boundary CFD. International Multidimensional Engine Modeling User's Group Meeting. Detroit, Michigan: Reaction Design Company; 2013. [
Link]
15. Kouhikamali R, Noori Rahim Abadi SM, Hassani M. Numerical study of performance of wire mesh mist eliminator. Applied Thermal Engineering. 2014;67(1):214-222. [
Link] [
DOI:10.1016/j.applthermaleng.2014.02.073]