Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1971-1978 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri M R, Mosayebi M, Mahdian A, Keshavarzi A. Pareto Optimization of a Three-Dimensional Full Vehicle Suspension Model Using Multi-Objective Genetic Algorithm. Modares Mechanical Engineering 2019; 19 (8) :1971-1978
URL: http://mme.modares.ac.ir/article-15-20856-en.html
1- Department of Mechanical Engineering, Malek-Ashtar University Of Technology, Isfahan, Iran
2- Department of Mechanical Engineering, Malek-Ashtar University Of Technology, Isfahan, Iran , m.mosayebi@mut-es.ac.ir
3- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
Abstract:   (3770 Views)
The present paper applies a multi-objective genetic algorithm for optimally design of a vehicle suspension. The vehicle model considers three-dimensional movements of vehicle body. In this full vehicle model having 8 degrees of freedom, vertical movement of passenger seat, vehicle body, and 4 tires as well as rotational movements of vehicle body create the degrees of freedom of the model. In this paper, applicable suspension parameters, consisting of passenger seat acceleration, vehicle body pitch angle, vehicle body roll angle, dynamic tire force, tire velocity, and suspension deflections are considered and optimized in optimization process. Different pairs of these parameters are selected as objective functions and optimized in multi-objective optimization processes, and Pareto solutions are obtained for pair of objective functions. In final optimization process, the Pareto solution related to the summation of dimensionless parameters in one suspension parameters group versus other group, is derived. In these Pareto solutions, there are important optimum points and designers can choose any optimum points for a particular purpose. Pareto optimization is better than other multi-objective optimization methods because there are more optimum points on Pareto front, where each point represents a level of optimization for the pairs of objective functions, and designers can choose any of the points to specific purpose.
Full-Text [PDF 964 kb]   (3163 Downloads)    
Article Type: Original Research | Subject: Dynamics
Received: 2018/06/8 | Accepted: 2019/01/26 | Published: 2019/08/12

References
1. Uys PE, Els PS, Thoresson M. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds. Journal of Terramechanics. 2007;44(2):163-175. [Link] [DOI:10.1016/j.jterra.2006.05.002]
2. Pennati M, Gobbi M, Mastinu G. A dummy for the objective ride comfort evaluation of ground vehicles. Vehicle System Dynamics. 2009;47(3):343-362. [Link] [DOI:10.1080/00423110802109724]
3. Tong W, Guo KH. Simulation testing research on ride comfort of vehicle with global-coupling torsion-elimination suspension. Physics Procedia. 2012;33:1741-1748. [Link] [DOI:10.1016/j.phpro.2012.05.279]
4. Chen Sh, Wang D, Chen J, Liu B, Li C. Optimization of CAR sound package with statistical energy analysis model using grey relational analysis and Taguchi method. Fluctuation and Noise Letters. 2013;12(1):1250024-254. [Link] [DOI:10.1142/S0219477512500241]
5. Türkay S, Akçay H. Aspects of achievable performance for quarter-car active suspensions. Journal of Sound and Vibration. 2008;311(1-2):440-460. [Link] [DOI:10.1016/j.jsv.2007.09.014]
6. Ihsan SI, Faris WF, Ahmadian M. Analysis of control policies and dynamic response of a Q-Car 2-DOF semi active system. Shock and Vibration. 2008;15(5):573-582. [Link] [DOI:10.1155/2008/807498]
7. Gündoğdu Ö. Optimal seat and suspension design for a quarter car with driver model using genetic algorithms. International Journal of Industrial Ergonomics. 2007;37(4):327-332. [Link] [DOI:10.1016/j.ergon.2006.11.005]
8. Zhang Y, Liu G, Wang P, Karimi HR. Finite frequency vibration control for polytopic active suspensions via dynamic output feedback. Mathematical Problems in Engineering. 2013;2013:598489. [Link] [DOI:10.1155/2013/598489]
9. Scheibe F, Smith MC. Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Vehicle System Dynamics. 2009;47(10):1229-1252. [Link] [DOI:10.1080/00423110802588323]
10. Čorić M, Deur J, Xu L, Eric Tseng H, Hrovat D. Optimisation of active suspension control inputs for improved vehicle ride performance. Vehicle System Dynamics. 2016;54(7):1004-1030. [Link] [DOI:10.1080/00423114.2016.1177655]
11. Liang YJ, Wu SL. Optimal vibration control for tracked vehicle suspension systems. Mathematical Problems in Engineering. 2013;2013:178354. [Link] [DOI:10.1155/2013/178354]
12. Barbosa RS. Vehicle dynamic response due to pavement roughness. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2011;33(3):302-307. [Link]
13. Jin L, Yu Y, Fu Y. Study on the ride comfort of vehicles driven by in-wheel motors. Advances in Mechanical Engineering. 2016;8(3):1-9. [Link] [DOI:10.1177/1687814016633622]
14. Drehmer LRC, Casas WJP, Gomes HM. Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm. Vehicle System Dynamics. 2015;53(4):449-474. [Link] [DOI:10.1080/00423114.2014.1002503]
15. Hada MK, Menon A, Bhave SY. Optimisation of an active suspension force controllerusing genetic algorithm for random input. Defence Science Journal. 2007;57(5):691-706. [Link] [DOI:10.14429/dsj.57.1806]
16. Seifi A, Hassannejad R, Hamed MA. Optimum design for passive suspension system of a vehicle to prevent rollover and improve ride comfort under random road excitations. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi Body Dynamics. 2016;230(4):426-441. [Link] [DOI:10.1177/1464419315618034]
17. Jin Z, Zhang L, Zhang J, Khajepour A. Stability and optimised H∞ control of tripped and untripped vehicle rollover. Vehicle System Dynamics. 2016;54(10):1405-1427. [Link] [DOI:10.1080/00423114.2016.1205750]
18. Gil Gómez GL, Lönnergård A, Asher MH, Nybacka M, Bakker E, Drugge L. Analysis and optimisation of objective vehicle dynamics testing in winter conditions. Vehicle System Dynamics. 2017;55(7):945-969. [Link] [DOI:10.1080/00423114.2016.1278248]
19. Loyer B, Jézéquel L. Robust design of a passive linear quarter car suspension system using a multi-objective evolutionary algorithm and analytical robustness indexes. Vehicle System Dynamics. 2009;47(10):1253-1270. [Link] [DOI:10.1080/00423110802613394]
20. Costas M, Díaz J, Romera L, Hernández S. A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. International Journal of Mechanical Sciences. 2014;88:46-54. [Link] [DOI:10.1016/j.ijmecsci.2014.07.002]
21. Jensen HA, Becerra LG, Valdebenito MA. On the use of a class of interior point algorithms in stochastic structural optimization. Computers & Structures. 2013;126:69-85. [Link] [DOI:10.1016/j.compstruc.2013.01.008]
22. Wang DF, Shi TZ, Deng ZX, Dong HL. Wheel dynamic load optimization of in-wheel motorelectric vehicle based on response surface method. Applied Mechanics and Materials. 2014;556-562:1435-1440. [Link] [DOI:10.4028/www.scientific.net/AMM.556-562.1435]
23. Busch J, Bestle D. Optimisation of lateral car dynamics taking into account parameter uncertainties. Vehicle System Dynamics. 2014;52(2):166-185. [Link] [DOI:10.1080/00423114.2013.868006]
24. Gu X, Sun G, Li G, Huang X, Li Y, Li Q. Multiobjective optimization design for vehicle occupant restraint system under frontal impact. Structural and Multidisciplinary Optimization. 2013;47(3):465-477. [Link] [DOI:10.1007/s00158-012-0811-7]
25. Sedighizadeh M, Faramarzi H, Mahmoodi MM, Sarvi M. Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems. 2014;62:586-598. [Link] [DOI:10.1016/j.ijepes.2014.04.058]
26. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-197. [Link] [DOI:10.1109/4235.996017]
27. Bharti PS, Maheshwari S, Sharma C. Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. Journal of Mechanical Science and Technology. 2012;26(6):1875-1883. [Link] [DOI:10.1007/s12206-012-0411-x]
28. Panzade PK. Modeling and analysis of full vehicle for ride and handling [Dissertation]. Coimbatore: PSG College of Technology; 2005. [Link]
29. Shirahatt A, Prasad PSS, Panzade P, Kulkarni MM. Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2008;30(1):66-76. [Link] [DOI:10.1590/S1678-58782008000100010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.