1. Rohsenow WM, Hartnett JP, Cho YI, editors. Handbook of heat transfer. Volume 1. 3rd Edition. New York: McGraw-Hill; 1998. [
Link]
2. Nivesrangsan P, Pethkool S, Nanan K, Pimsarn M, Eiamsa-ard S. Thermal performance assessment of turbulent flow through dimpled tubes. 14th International Heat Transfer Conference, 8-13 August, 2010, Washington DC, USA. New York: The American Society of Mechanical Engineers; 2010. [
Link] [
DOI:10.1115/IHTC14-22503]
3. Kukulka DJ, Smith R, Zaepfel J. Development and evaluation of vipertex enhanced heat transfer tubes for use in fouling conditions. Theoretical Foundations of Chemical Engineering. 2012;46(6):627-633. [
Link] [
DOI:10.1134/S0040579512060152]
4. Kukulka DJ, Smith R. Thermal-hydraulic performance of Vipertex 1EHT enhanced heat transfer tubes. Applied Thermal Engineering. 2013;61(1):60-66. [
Link] [
DOI:10.1016/j.applthermaleng.2012.12.037]
5. Kukulka DJ, Smith R, Li W. Comparison of condensation and evaporation heat transfer on the outside of smooth and enhanced 1EHT tubes. Applied Thermal Engineering. 2016;105:913-922. [
Link] [
DOI:10.1016/j.applthermaleng.2016.03.036]
6. Sobhani M, Behzadmehr A. Numerical study of the effect of roughness on the heat transfer Improvised pipes of heat transfer. 3rd Nation Conference and 1st International Conference on Applied Reasearch in Electrical, Mechanical and Mechatronic, 17 February, 2016, Tehran, Iran. Tehran: Male Ashtar University of Technology; 2016. [Persian] [
Link]
7. Kumar P, Kumar A, Chamoli S, Kumar M. Experimental investigation of heat transfer enhancement and fluid flow characteristics in a protruded surface heat exchanger tube. Experimental Thermal and Fluid Science. 2016;71:42-51. [
Link] [
DOI:10.1016/j.expthermflusci.2015.10.014]
8. Sarmadian A, Shafaee M, Mashouf H, Mohseni SG. Condensation heat transfer and pressure drop characteristics of R-600a in horizontal smooth and helically dimpled tubes. Experimental Thermal and Fluid Science. 2017;86:54-62. [
Link] [
DOI:10.1016/j.expthermflusci.2017.04.001]
9. Ayub ZH, Ayub AH, Ribatski G, Moreira TA, Khan TS. Two-phase pressure drop and flow boiling heat transfer in an enhanced dimpled tube with a solid round rod insert. International Journal of Refrigeration. 2017;75:1-13. [
Link] [
DOI:10.1016/j.ijrefrig.2017.01.008]
10. Aroonrat K, Wongwises S. Condensation heat transfer and pressure drop characteristics of R-134a flowing through dimpled tubes with different helical and dimpled pitches. International Journal of Heat and Mass Transfer. 2018;121:620-631. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2018.01.001]
11. Aroonrat K, Wongwises S. Experimental investigation of condensation heat transfer and pressure drop of R-134a flowing inside dimpled tubes with different dimpled depths. International Journal of Heat and Mass Transfer. 2019;128:783-793. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2018.09.039]
12. Liu Y, Rao Y, Weigand B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface. International Journal of Heat and Mass Transfer. 2019;128:54-65. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2018.08.097]
13. Ming T, Cai C, Yang W, Shen W, Gan T. Optimization of dimples in microchannel heat sink with impinging jets-Part A: Mathematical model and the influence of dimple radius. Journal of Thermal Science. 2018;27(3):195-202. [
Link] [
DOI:10.1007/s11630-018-1000-9]
14. Shui L, Sun J, Gao F, Zhang Ch. Flow and heat transfer in the tree-like branching microchannel with/without dimples. Entropy. 2018;20(5):379. [
Link] [
DOI:10.3390/e20050379]
15. Li LJ, Lin CX, Ebadian MA. Turbulent mixed convective heat transfer in the entrance region of a curved pipe with uniform wall-temperature. International Journal of Heat and Mass Transfer. 1998;41(23):3793-3805. [
Link] [
DOI:10.1016/S0017-9310(98)00100-8]
16. Sillekens JJM, Rindt CCM, Van Steenhoven AA. Mixed convection in a 90 Deg horizontal bend. 10th International Heat Transfer Conference, 14-18 August, 1994, Brighton, UK. Rugby: Institute of Chemical Engineers; 1994. [
Link]
17. Goering DJ, Humphrey JAC, Greif R. The dual influence of curvature and buoyancy in fully developed tube flows. International Journal of Heat and Mass Transfer. 1997;40(9):2187-2199. [
Link] [
DOI:10.1016/S0017-9310(96)00248-7]
18. Ghaffari O, Behzadmehr A, Ajam H. Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. International Communications in Heat and Mass Transfer. 2010;37(10):1551-1558. [
Link] [
DOI:10.1016/j.icheatmasstransfer.2010.09.003]
19. Alikhani S, Behzadmehr A, Saffar-Avval M. Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach. Heat and Mass Transfer. 2011;47(1):107-118. [
Link] [
DOI:10.1007/s00231-010-0677-4]
20. Huminic G, Huminic A. Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review. Renewable and Sustainable Energy Reviews. 2016;58:1327-1347. [
Link] [
DOI:10.1016/j.rser.2015.12.230]
21. Fox RW, McDonald AT, Pritchard PJ. Introduction to fluid mechanics. 6th Edition. Hoboken: Wiley; 2005. pp. 213-215. [
Link]
22. Frank WM. Fluid mechanics. Volume 1. 5th Edition. Boston: McGraw-Hill; 2003. pp 188-189. [
Link]
23. Wojtkowiak J, Popiel CO. Effect of cooling on pressure losses in U-type wavy pipe flow. International Communications in Heat and Mass Transfer. 2000;27(2):169-177. [
Link] [
DOI:10.1016/S0735-1933(00)00098-1]
24. Ito H. Friction factors for turbulent flow in curved pipes. The American Society of Mechanical Engineers. 1959;81:123-134. [
Link]