1. Seyed Yaghoubi A, Liaw B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies. Composite Structures. 2012;94(8):2585-2598. [
Link] [
DOI:10.1016/j.compstruct.2012.03.004]
2. Hoo Fatt MS, Lin C, Revilock Jr DM, Hopkins DA. Ballistic impact of GLARE™ fiber-metal laminates. Composite Structures. 2003;61(1-2):73-88. [
Link] [
DOI:10.1016/S0263-8223(03)00036-9]
3. Zhao G, Cho Ch, Lu Sh, Wang Z. Experimental study on impact resistance properties of T300/epoxy composite laminates. Journal of Composite Materials. 2010;44(7):857-870. [
Link] [
DOI:10.1177/0021998309346391]
4. Liu Y, Liaw B. Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates. Applied Composite Materials. 2010;17(1):43-62. [
Link] [
DOI:10.1007/s10443-009-9119-1]
5. Lee DW, Park BJ, Park SY, Choi CH, Song JI. Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings. Composite Structures. 2018;189:61-69. [
Link] [
DOI:10.1016/j.compstruct.2018.01.044]
6. Sharma AP, Khan SH. Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminum laminates. Polymer Testing. 2018;70:320-347. [
Link] [
DOI:10.1016/j.polymertesting.2018.07.005]
7. Li X, Zhang X, Guo Y, Shim VP, Yang J, Chai GB. Influence of fiber type on the impact response of titanium-based fiber-metal laminates. International Journal of Impact Engineering. 2018;114:32-42. [
Link] [
DOI:10.1016/j.ijimpeng.2017.12.011]
8. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin Walled Structures. 2017;112:118-124. [
Link] [
DOI:10.1016/j.tws.2016.12.014]
9. Vlot A, Gunnink JW, editors. Fibre metal laminates: An introduction. Berlin: Springer Science & Business Media; 2011. [
Link]
10. Vlot A. Low-velocity impact loading: On fibre reinforced aluminium laminates (ARALL and GLARE) and other aircraft sheet materials [Internet]. Delft: Delft University of Technology; 1993 [cited 15 Jan 2018]. Available from: https://repository.tudelft.nl/islandora/object/uuid:9200a03f-00ab-4c90-8e38-20748dd5fde0 [
Link]
11. Lambert JP, Jonas GH. Towards standardization in terminal ballistics testing: Velocity representation [Internet]. Aberdeen: Ballistic Research Laboratory; 1976 [cited 10 Jan 2018]. [
Link] [
DOI:10.21236/ADA021389]
12. Abdullah MR, Cantwell WJ. The impact resistance of polypropylene-based fibre-metal laminates. Composites Science and Technology. 2006;66(11-12):1682-1693. [
Link] [
DOI:10.1016/j.compscitech.2005.11.008]
13. Sadighi M, Alderliesten RC, Benedictus R. Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering. 2012;49:77-90. [
Link] [
DOI:10.1016/j.ijimpeng.2012.05.006]
14. Seyed Yaghoubi A, Liaw B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams. International Journal of Impact Engineering. 2013;54:138-148. [
Link] [
DOI:10.1016/j.ijimpeng.2012.10.007]