Volume 19, Issue 6 (June 2019)                   Modares Mechanical Engineering 2019, 19(6): 1551-1558 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yahya Abadi S, Abbasi M. Modification of Mechanical Properties of Al6061 Aluminum Alloy Joint Formed Using Friction Stir Welding by Increasing the Cooling Rate and Application of Vibration. Modares Mechanical Engineering 2019; 19 (6) :1551-1558
URL: http://mme.modares.ac.ir/article-15-21319-en.html
1- Faculty of Engineering, University of Kashan, Kashan, Iran
2- Faculty of Engineering, University of Kashan, Kashan, Iran , m.abbasi@kashanu.ac.ir
Abstract:   (3524 Views)
Al6061 alloy is widely used in the industry; so, its welding with reliable methods is of great importance. In the fusion welding of these alloys, imperfections such as cracks, cavities, and segregations of alloy element may occur that necessitates the application of solid state welding processes such as friction stir welding method. In spite of the many advantages of the friction stir welding, several attempts have been made to improve the properties of the resulting joints. In this study, the effect of increasing the cooling rate and the effect of vibration during the process on the microstructure and mechanical properties of Al6061 welds . Also, the simultaneous effect of water and vibration on the mechanical properties of the joints is evaluated The results showed that vibration due to increasing the strain  and water due to increasing the cooling rate reduced the size in the stir zone. Investigations revealed that cooling rate increment decreased the dissolution of Mg2 precipitates significantly. The results of the tensile test showed that the strength of the due to the grain refinement as was applied or when increased. Also, when the vibration and coolant were applied simultaneously, the strength increased dramatically due to significant grain refinement and presence of Mg2 precipitates. On the other hand, with grain refinement, the volume fraction of grain boundaries increases and, thus, the growth of the cracks decreases and correspondingly elongation enhances.
Full-Text [PDF 1078 kb]   (2913 Downloads)    
Article Type: Original Research | Subject: Welding
Received: 2018/05/25 | Accepted: 2018/12/28 | Published: 2019/06/1

References
1. Gharavi F, Matori KA, Yunus R, Othman NK, Fadaeifard F. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process. Journal of Materials Research and Technology. 2015;4(3):314-322. [Link] [DOI:10.1016/j.jmrt.2015.01.007]
2. Sadeesh P, Venkatesh Kannan M, Rajkumar V, Avinash P, Arivazhagan N, Devendranath Ramkumar K, et al. Studies on friction stir welding of AA 2024 and AA 6061 dissimilar metals. Procedia Engineering. 2014;75:145-149. [Link] [DOI:10.1016/j.proeng.2013.11.031]
3. Abbasi M, Abdollahzadeh A, Bagheri B, Omidvar H. The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy. Journal of Materials Engineering and Performance. 2015;24(12):5037-5045. [Link] [DOI:10.1007/s11665-015-1786-5]
4. Lakshminarayanan AK, Malarvizhi S, Balasubramanian V. Developing friction stir welding window for AA2219 aluminium alloy. Transactions of Nonferrous Metals Society of China. 2011;21(11):2339-2347. [Link] [DOI:10.1016/S1003-6326(11)61018-2]
5. Zhang Z, Zhang HW. Solid mechanics-based Eulerian model of friction stir welding. The International Journal of Advanced Manufacturing Technology. 2014;72(9-12):1647-1653. [Link] [DOI:10.1007/s00170-014-5789-4]
6. Mehta KP, Badheka VJ. Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 2017;239:336-345. [Link] [DOI:10.1016/j.jmatprotec.2016.08.037]
7. Pitschman M, Dolecki JW, Johns GW, Zhou J, Roth JT. Application of electric current in friction stir welding. ASME 2010 International Manufacturing Science and Engineering Conference, 12-15 October, 2010, Erie, Pennsylvania, USA. New York: American Society of Mechanical Engineers; 2010. [Link] [DOI:10.1115/MSEC2010-34166]
8. Campanelli SL, Casalino G, Casavola C, Moramarco V. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy. Materials. 2013;6(12):5923-5941. [Link] [DOI:10.3390/ma6125923]
9. Amini S, Amiri MR. Study of ultrasonic vibrations' effect on friction stir welding. The International Journal of Advanced Manufacturing Technology. 2014;73(1-4):127-135. [Link] [DOI:10.1007/s00170-014-5806-7]
10. Rahmi M, Abbasi M. Friction stir vibration welding process: Modified version of friction stir welding process. The International Journal of Advanced Manufacturing Technology. 2017;90(1-4):141-151. [Link] [DOI:10.1007/s00170-016-9383-9]
11. Sinhmar S, Dwivedi DK. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling. Materials Science and Engineering A. 2017;684:413-422. [Link] [DOI:10.1016/j.msea.2016.12.087]
12. Sharma Ch, Dwivedi DK, Kumar P. Influence of in-process cooling on tensile behaviour of friction stir welded joints of AA7039. Materials Science and Engineering A. 2012;556:479-487. [Link] [DOI:10.1016/j.msea.2012.07.016]
13. Fratini L, Buffa G, Shivpuri R. Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Materialia. 2010;58(6):2056-2067. [Link] [DOI:10.1016/j.actamat.2009.11.048]
14. ASTM International. ASTM E3-11: Standard guide for preparation of metallographic specimens [Internet]. West Conshohocken: ASTM International; 2011 [cited 1 Jun 2018]. Available from: https://wenku.baidu.com/view/b7ac1006a6c30c2259019eb2.html [Link]
15. Liu G, Murr LE, Niou CS, McClure JC, Vega FR. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta Materialia. 1997;37(3):355-361. [Link] [DOI:10.1016/S1359-6462(97)00093-6]
16. ASTM International. ASTM 8M: Standard test methods of tension testing of metallic materials metric [Internet]. West Conshohocken: ASTM International; 2003 [cited 10 Jun 2018]. Available from: Not Found [Link]
17. ASTM International. ASTM E384-11: Standard test method for Knoop and Vickers hardness of materials [Internet]. West Conshohocken: ASTM International; 2011 [cited 7 Month?Jun 2018]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E384-11.htm [Link]
18. Sarkari Khorrami M, Kazeminezhad M, Kokabi AH. Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding. Materials Science and Engineering A. 2012;543:243-248. [Link] [DOI:10.1016/j.msea.2012.02.082]
19. Jata K, Lee Semiatin S. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Materialia. 2000;43(8):743-749. [Link] [DOI:10.1016/S1359-6462(00)00480-2]
20. Callister WD. Materials science and engineering: An introduction. 7th Edition. Hoboken: John Wiley & Sons; 2007. [Link]
21. Fouladi S, Abbasi M, Givi M. Friction stir vibration welding and study about the effects of its parameters on microstructure and mechanical properties of Al5052 joint. Modares Mechanical Engineering. 2017;17(4):217-224. [Persian] [Link]
22. Li YS, Zhang Y, Tao NR, Lu K. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Materialia. 2009;57(3):761-772. [Link] [DOI:10.1016/j.actamat.2008.10.021]
23. Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia. 2004;51(6):509-514. [Link] [DOI:10.1016/j.scriptamat.2004.05.043]
24. Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering R Reports. 2005;50(1-2):1-78. [Link] [DOI:10.1016/j.mser.2005.07.001]
25. Raikoty H, Ahmed I, Talia GE. High speed friction stir welding: a computational and experimental study. ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, 17-22 July, 2005, San Francisco, California, USA. New York: ASME; 2005. [Link]
26. Zhang HJ, Liu HJ, Yu L. Effect of water cooling on the performances of friction stir welding heat-affected zone. Journal of Materials Engineering and Performance. 2012;21(7):1182-1187. [Link] [DOI:10.1007/s11665-011-0060-8]
27. Cho JH, Han SH, Lee CG. Cooling effect on microstructure and mechanical properties during friction stir welding of Al-Mg-Si aluminum alloys. Materials Letters. 2016;180:157-161. [Link] [DOI:10.1016/j.matlet.2016.05.157]
28. Sato YS, Kokawa H, Enomoto M, Jogan Sh. Microstructural evolution of 6063 aluminum during friction-stir welding. Metallurgical and Materials Transactions A. 1999;30(9):2429-2437. [Link] [DOI:10.1007/s11661-999-0251-1]
29. Fouladi S, Abbasi M. The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint. Journal of Materials Processing Technology. 2017;243:23-30. [Link] [DOI:10.1016/j.jmatprotec.2016.12.005]
30. Dadaei M, Omidvar H, Bagheri B, Jahazi M, Abbasi M. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy. International Journal of Materials Research. 2014;105(4):369-374. [Link] [DOI:10.3139/146.111025]
31. Dieter GE. Mechanical metallurgy. 3rd Edition. New York: McGraw-Hill; 1986. [Link]
32. Estrin YZ, Zabrodin PA, Braude IS, Grigorova TV, Isaev NV, Pustovalov VV, et al. Low-temperature plastic deformation of AZ31 magnesium alloy with different microstructures. Low Temperature Physics. 2010;36(12):1100-1106. [Link] [DOI:10.1063/1.3539781]
33. Hansen N. The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metallurgica. 1977;25(8):863-869. [Link] [DOI:10.1016/0001-6160(77)90171-7]
34. Naderi M, Abbasi M, Saeed-Akbari A. Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment. Metallurgical and Materials Transactions A. 2013;44(4):1852-1861. [Link] [DOI:10.1007/s11661-012-1546-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.