1. 1- Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007;32(8-9):762-798. [
Link] [
DOI:10.1016/j.progpolymsci.2007.05.017]
2. Levine B. A new era in porous metals: applications in orthopaedics. Advanced Engineering Materials Banner. 2008;10(9):788-792. [
Link] [
DOI:10.1002/adem.200800215]
3. Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci. 2010;368(1917):1999-2032. [
Link] [
DOI:10.1098/rsta.2010.0010]
4. Sola A, Bellucci D, Cannillo V. Functionally graded materials for orthopedic applications-an update on design and manufacturing. Biotechnology Advances. 2016;34(5):504-531. [
Link] [
DOI:10.1016/j.biotechadv.2015.12.013]
5. Ehterami A, Saraeian P, Etemadi Haghighi S, Azami M. Preparation and characterization of barium titanate scaffold for bone tissue engineering. Modares Mechanical Engineering. 2018;17(12):417-422. [Persian] [
Link]
6. Imani SM, Rabiee SM, Moazami Goudarzi A, Dardel M. Investigation of the mechanical properties of the porous scaffolds used in bone tissue engineering by means of micromechanical modeling. Modares Mechanical Engineering. 2017;17(9):397-408. [Persian] [
Link]
7. Helou M, Kara S. Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing. 2018;31(3):243-261. [
Link] [
DOI:10.1080/0951192X.2017.1407456]
8. Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals. 1998;47(2):525-540. [
Link] [
DOI:10.1016/S0007-8506(07)63240-5]
9. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials. 2010;3(3):249-259. [
Link] [
DOI:10.1016/j.jmbbm.2009.10.006]
10. Heinl P, Körner C, Singer RF. Selective electron beam melting of cellular titanium: mechanical properties. Advanced Engineering Materials Banner. 2008;10(9):882-888. [
Link] [
DOI:10.1002/adem.200800137]
11. Hedayati R, Sadighi Mohammadi-Aghdam M, Zadpoor AA. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Materials Science and Engineering: C. 2016;60:163-183. [
Link] [
DOI:10.1016/j.msec.2015.11.001]
12. Babaee S, Haghpanah Jahromi B, Ajdari A, Nayeb-Hashemi H, Vaziri A. Mechanical properties of open-cell rhombic dodecahedron cellular structures. Acta Materialia. 2012;60(6-7):2873-2885. [
Link] [
DOI:10.1016/j.actamat.2012.01.052]
13. Hedayati R, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA. Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells. Applied Mathematical Modelling. 2017;46:408-422. [
Link] [
DOI:10.1016/j.apm.2017.01.076]
14. Hedayati R, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA. Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell. Journal of the Mechanical Behavior of Biomedical Materials. 2016;53:272-294. [
Link] [
DOI:10.1016/j.jmbbm.2015.07.013]
15. Ahmadi SM, Campoli G, Amin Yavari S, Sajadi B, Wauthle R, Schrooten J, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Journal of the Mechanical Behavior of Biomedical Materials. 2014;34:106-115. [
Link] [
DOI:10.1016/j.jmbbm.2014.02.003]
16. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-5491. [
Link] [
DOI:10.1016/j.biomaterials.2005.02.002]
17. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West II HA. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering: C. 2008;28(3):366-373. [
Link] [
DOI:10.1016/j.msec.2007.04.022]
18. Bragdon CR, Jasty M, Greene M, Rubash HE, Harris WH. Biologic fixation of total hip implants: Insights gained from a series of canine studies. The Journal of Bone and Joint Surgery. 2004;86(Supple 2):105-117. [
Link] [
DOI:10.2106/00004623-200412002-00015]
19. Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. Next generation orthopaedic implants by additive manufacturing using electron beam melting. International Journal of Biomaterials. 2012;2012:245727. [
Link] [
DOI:10.1155/2012/245727]
20. de Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Engineering Part A. 2013;19(23-24):2645-2654. [
Link] [
DOI:10.1089/ten.tea.2012.0753]
21. Abele E, Stoffregen HA, Kniepkamp M, Lang S, Hampe M. Selective laser melting for manufacturing of thin-walled porous elements. Journal of Materials Processing Technology. 2015;215:114-122. [
Link] [
DOI:10.1016/j.jmatprotec.2014.07.017]
22. Yadroitsev I, Shishkovsky I, Bertrand P, Smurov I. Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Applied Surface Science. 2009;255(10):5523-5527. [
Link] [
DOI:10.1016/j.apsusc.2008.07.154]