Volume 19, Issue 7 (July 2019)                   Modares Mechanical Engineering 2019, 19(7): 1613-1622 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alimoradi H, Shams M. Numerical Simulation of the Effects of Surface Roughness on Nucleation Site Density of Nanofluid Boiling. Modares Mechanical Engineering 2019; 19 (7) :1613-1622
URL: http://mme.modares.ac.ir/article-15-21547-en.html
1- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran , shams@kntu.ac.ir
Abstract:   (7314 Views)
In this research, a numerical scheme for subcooled flow boiling with water based fluid in a channel with a hot spot was developed. The effect of nanoparticles was studied in the subcooled flow boiling. Alumina nanoparticles were used for the protection of nanofluid. The properties of nanofluid are assumed to be temperature independent. The mixture of nanofluid is studied by using Eluer–Eluer approach. In addition to considering the variable properties of temperature in this study, a model for the density of the nucleation site was used, which is the surface roughness and sedimentation rate of the nanoparticles. After verifying the model, the nanofluid boiling was modeled, using 4 roughnesses of 25, 50, 75, and 100 nm. Changes of bubble dynamics parameters were investigated in different heat fluxes and roughnesses. According to the results, it was found that with increasing surface roughness, the surface temperature drop and the density of the nucleation site density increased. Also, bubble departure diameter is increased and bubble detachment frequency is decreased by increasing surface roughness. Moreover, the results shows that bubble detachment diameter is increased by increasing the heat flux and bubble detachment waiting time.
Full-Text [PDF 796 kb]   (2642 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2018/05/31 | Accepted: 2018/11/14 | Published: 2019/07/1

1. Kandlikar SG. Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes. Journal of Heat Transfer. 1991;113(1):190-200. [Link] [DOI:10.1115/1.2910524]
2. Gupta A, Saini JS, Varma HK. Boiling heat transfer in small horizontal tube bundles at low cross-flow velocities. International Journal of Heat and Mass Transfer. 1995;38(4):599-605. [Link] [DOI:10.1016/0017-9310(94)00282-Z]
3. Kumar Sh, Mohanty B, Gupta SC. Boiling heat transfer from a vertical row of horizontal tubes. International Journal of Heat and Mass Transfer. 2002;45(18):3857-3864. [Link] [DOI:10.1016/S0017-9310(01)00360-X]
4. Ribatski G, Saiz Jabardo JM, Da Silva EF. Modeling and experimental study of nucleate boiling on a vertical array of horizontal plain tubes. Experimental Thermal and Fluid Science. 2008;32(8):1530-1537. [Link] [DOI:10.1016/j.expthermflusci.2008.04.008]
5. Kolev NI. How accurately can we predict nucleate boiling?. Experimental Thermal and Fluid Science. 1995;10(3):370-378. [Link] [DOI:10.1016/0894-1777(94)00097-R]
6. Pioro IL, Rohsenow W, Doerffer SS. Nucleate pool-boiling heat transfer, I: Review of parametric effects of boiling surface. International Journal of Heat and Mass Transfer. 2004;47(23):5033-5044. [Link] [DOI:10.1016/j.ijheatmasstransfer.2004.06.019]
7. Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering. 1992;13(2):43-69. [Link] [DOI:10.1080/01457639208939774]
8. Yan J, Bi Q, Liu Z, Zhu G, Cai L. Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes. Fusion Engineering and Design. 2015;100:406-418. [Link] [DOI:10.1016/j.fusengdes.2015.07.007]
9. Khalili Sadaghiani A, Koşar A. Numerical and experimental investigation on the effects of diameter and length on high mass flux subcooled flow boiling in horizontal microtubes. International Journal of Heat and Mass Transfer. 2016;92:824-837. [Link] [DOI:10.1016/j.ijheatmasstransfer.2015.09.004]
10. Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer. 2003;46(5):851-862. [Link] [DOI:10.1016/S0017-9310(02)00348-4]
11. Li CH, Wang BX, Peng XF. Experimental investigation on boiling of nano-particle suspensions. 5th International Conference on Boiling Heat Transfer (ICBHT 2003), Montego Bay, Jamaica, May 4-8, 2003. Montego Bay: ICBHT; 2003. [Link]
12. Ahmed O, Hamed MS. The effect of experimental techniques on the pool boiling of nanofluids. 7th International Conference on Multiphase Flow (ICMF 2010), 30 May - 4 June 2010, Tampa, FL, USA, Marriott Tampa Waterside. Gainesville FL: University of Florida; 2010. [Link]
13. Raveshi MR, Keshavarz A, Salemi Mojarrad M, Amiri Sh. Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Experimental Thermal and Fluid Science. 2013;44:805-814. [Link] [DOI:10.1016/j.expthermflusci.2012.09.025]
14. Tryggvason G, Esmaeeli A, Al-Rawahi N. Direct numerical simulations of flows with phase change. Computers & Structures. 2005;83(6-7):445-453. [Link] [DOI:10.1016/j.compstruc.2004.05.021]
15. Chen E, Li Y, Cheng X, Wang L. Modeling of low-pressure subcooled boiling flow of water via the homogeneous MUSIG approach. Nuclear Engineering and Design. 2009;239(10):1733-1743. [Link] [DOI:10.1016/j.nucengdes.2009.06.005]
16. Yang Z, Peng XF, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. International Journal of Heat and Mass Transfer. 2008;51(5-6):1003-1016. [Link] [DOI:10.1016/j.ijheatmasstransfer.2007.05.025]
17. Krepper E, Končar B, Egorov Y. CFD modelling of subcooled boiling - concept, validation and application to fuel assembly design. Nuclear Engineering and Design. 2007;237(7):716-731. [Link] [DOI:10.1016/j.nucengdes.2006.10.023]
18. Xu L, Xu J. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel. International Journal of Heat and Mass Transfer. 2012;55(21-22):5673-5686. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.05.063]
19. Abedini E, Behzadmehr A, Hosseini Sarvari SM, Mansouri SH. Numerical investigation of subcooled flow boiling of a nanofluid. International Journal of Thermal Sciences. 2013;64:232-239. [Link] [DOI:10.1016/j.ijthermalsci.2012.08.008]
20. Boudouh M, Louahlia Gualous H, De Labachelerie M. Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels. Applied Thermal Engineering. 2010;30(17-18):2619-2631. [Link] [DOI:10.1016/j.applthermaleng.2010.06.027]
21. Henderson K, Park YG, Liu L, Jacobi AM. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. International Journal of Heat and Mass Transfer. 2010;53(5-6):944-951. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.11.026]
22. Chehade AA, Louahlia Gualous H, Le Masson S, Fardoun F, Besq A. Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Research Letters. 2013;8:130. [Link] [DOI:10.1186/1556-276X-8-130]
23. Lee T, Lee JH, Jeong YH. Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions. International Journal of Heat and Mass Transfer. 2013;56(1-2):101-106. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.09.030]
24. Aminfar H, Mohammadpourfard M, Maroofiazar R. Numerical study of non-uniform magnetic fields effects on subcooled nanofluid flow boiling. Progress in Nuclear Energy. 2014;74:232-241. [Link] [DOI:10.1016/j.pnucene.2014.03.012]
25. Alimoradi H, Shams M. Optimization of subcooled flow boiling in a vertical pipe by using artificial neural network and multi objective genetic algorithm. Applied Thermal Engineering. 2017;111:1039-1051. [Link] [DOI:10.1016/j.applthermaleng.2016.09.114]
26. Alimoradi H, Shams M, Valizadeh Z. The effects of nanoparticles in the subcooled boiling flow in the channels with different cross-sectional area and same hydraulic diameter. Modares Mechanical Engineering. 2017;16(12):545-554. [Persian] [Link]
27. Cheung SCP, Vahaji S, Yeoh GH, Tu JY. Modeling subcooled flow boiling in vertical channels at low pressures - part 1: Assessment of empirical correlations. International Journal of Heat and Mass Transfer. 2014;75:736-753. [Link] [DOI:10.1016/j.ijheatmasstransfer.2014.03.016]
28. Antal SP, Lahey Jr RT, Flaherty JE. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow. 1991;17(5):635-652. [Link] [DOI:10.1016/0301-9322(91)90029-3]
29. Tolubinsky VI, Kostanchuk DM. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. Proceedings of the 4th International Heat Transfer Conference. Danbury: Begel House; 1970. [Link]
30. Cole R. A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal. 1960;6(4):533-538. [Link] [DOI:10.1002/aic.690060405]
31. Kurul N, Podowski MZ. On the modeling of multidimensional effects in boiling channels. Proceedings of the 27th National Heat Transfer Conference. Unknown City: Unknown Publisher; 1991. pp. 301-314. [Link]
32. Yang SR, Kim RH. A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics. International Journal of Heat and Mass Transfer. 1988;31(6):1127-1135. [Link] [DOI:10.1016/0017-9310(88)90055-5]
33. Benjamin RJ, Balakrishnan AR. Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties. Experimental Thermal and Fluid Science. 1997;15(1):32-42. [Link] [DOI:10.1016/S0894-1777(96)00168-9]
34. Wang CH, Dhir VK. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Journal of Heat Transfer. 1993;115(3):659-669. [Link] [DOI:10.1115/1.2910737]
35. Basu N, Warrier GR, Dhir VK. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. Journal of Heat Transfer. 2002;124(4):717-728. [Link] [DOI:10.1115/1.1471522]
36. Hibiki T, Ishii M. Active nucleation site density in boiling systems. International Journal of Heat and Mass Transfer. 2003;46(14):2587-2601. [Link] [DOI:10.1016/S0017-9310(03)00031-0]
37. Kim SJ, Bang IC, Buongiorno J, Hu LW. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer. 2007;50(19-20):4105-4116. [Link] [DOI:10.1016/j.ijheatmasstransfer.2007.02.002]
38. Ganapathy H, Sajith V. Semi-analytical model for pool boiling of nanofluids. International Journal of Heat and Mass Transfer. 2013;57(1):32-47. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.09.056]
39. Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A. Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: An experimental study. Applied Thermal Engineering. 2015;90:384-394. [Link] [DOI:10.1016/j.applthermaleng.2015.07.016]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.