Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 599-610 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sangbori M, Nejat A, Gharali K. Tonal Noise prediction of SD7037 Airfoil using 3D Large Eddy Simulation Approach. Modares Mechanical Engineering 2020; 20 (3) :599-610
URL: http://mme.modares.ac.ir/article-15-21759-en.html
1- Mechanical Engineering School, College of Engineering, University of Tehran, Tehran, Iran
2- Mechanical Engineering School, College of Engineering, University of Tehran, Tehran, Iran , nejat@ut.ac.ir
Abstract:   (4693 Views)
In this article, noise generation mechanisms are studied at different Reynolds numbers and angles of attack. Tonal noise is the major part of airfoil noise at low Reynolds numbers. Studying the tonal noise and the effects of Reynolds number and angle of attack is challenging in aeroacoustics. 3D numerical simulation is conducted using the large eddy simulation method on SD7037 airfoil. Sound propagation is computed using the Ffowcs Williams-Hawkings (FW-H) analogy. The numerical results are validated using available experimental results. Some discrete peaks and a dominant peak exist in frequency spectra at low angles of attack. Increase of Reynolds number and the angle of attack decreases the number of discrete peaks and at high angles of attack and the dominant peak is diminished too. Studying the flow features shows that when a laminar boundary layer covers a vast area of the suction side, it can amplify acoustic waves that are generated in wake of the airfoil and this mechanism causes a dominant peak in the acoustic spectrum. Amplifying Tollmien-Schlichting waves by shear layer in laminar separation at suction side cause the discrete peaks and when a transition occurs in the airfoil suction side, discrete peaks are diminished. In the original semi-empirical Brooks, Pope and Marcolini (BPM) formulation, the boundary layer thickness of the pressure side is usually used as the length scale and it is replaced by the suction side boundary layer thickness. The results predict the frequency and amplitude of tonal noise successfully.
Full-Text [PDF 2129 kb]   (1621 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/06/5 | Accepted: 2019/05/30 | Published: 2020/03/1

References
1. Pedersen E, Persson Waye K. Wind turbine noise, annoyance and self-reported health and well-being in different living environments. Occupational and Environmental Medicine. 2007;64(7):480-486. [Link] [DOI:10.1136/oem.2006.031039]
2. Rogers AL, Manwell JF, Wright S. Wind turbine acoustic noise. Renewable Energy Research Laboratory, Amherst: University of Massachusetts. 2006. [Link]
3. Brooks TF, Pope DS, Marcolini MA. Airfoil self-noise and prediction. Technical Report. Washington: NASA; July 1989. Report No: NASA-RP-1218, L-16528. [Link]
4. Paterson RW, Vogt PG, Fink MR, Munch CL. Vortex noise of isolated airfoils. Journal of Aircraft. 1973;10(5):296-302. [Link] [DOI:10.2514/3.60229]
5. Tam CKW. Discrete tones of isolated airfoils. The Journal of the Acoustical Society of America. 1974;55(6):10.1121. [Link] [DOI:10.1121/1.1914682]
6. Fink MR. Prediction of airfoil tone frequencies. Journal of Aircraft. 1975;12(2):118-120. [Link] [DOI:10.2514/3.44421]
7. Arbey H, Bataille J. Noise generated by airfoil profiles placed in a uniform laminar flow. Journal of Fluid Mechanics. 1983;134:33-47. [Link] [DOI:10.1017/S0022112083003201]
8. Lowson M, Fiddes S, Nash E. Laminar boundary layer aero-acoustic instabilities. 32nd Aerospace Sciences Meeting and Exhibit, 10-13 January 1994, Reno, NV, USA. Reston: AIAA; 1994. [Link] [DOI:10.2514/6.1994-358]
9. McAlpine A, Nash EC, Lowson MV. On the generation of discrete frequency tones by the flow around an aerofoil. Journal of Sound and Vibration. 1999;222(5):753-779. [Link] [DOI:10.1006/jsvi.1998.2085]
10. Nash E, Lowson M. Noise due to boundary layer instabilities. CEAS/AIAA Aeroacoustic Conference. 1995;124:875-884. [Link]
11. Nash EC, Lowson MV, McAlpine A. Boundary-layer instability noise on aerofoils. Journal of Fluid Mechanics. 1999;382:27-61. [Link] [DOI:10.1017/S002211209800367X]
12. Arcondoulis E, Doolan C, Zander AC. Airfoil noise measurements at various angles of attack and low Reynolds number. Proceeding of ACOUSTICS 23-25 November 2009, Adelaide, Australia. Unknown Publisher; 2009. [Link]
13. Desquesnes G, Terracol M, Sagaut P. Numerical investigation of the tone noise mechanism over laminar airfoils. Journal of Fluid Mechanics. 2007;591:155-182. [Link] [DOI:10.1017/S0022112007007896]
14. Akishita S. Tone-like noise from an isolated two dimensional airfoil. 10th Aeroacoustics Conference, 9-11 July 1986, Seattle, WA, USA. Reston: AIAA; 2012. [Link] [DOI:10.2514/6.1986-1947]
15. Ikeda T, Atobe T, Fujimoto D, Inasawa A, Asai M. Self-noise effects on aerodynamics of cambered airfoils at low Reynolds number. AIAA Journal. 2015;53(8):2256-2269. [Link] [DOI:10.2514/1.J053664]
16. Pröbsting S, Scarano F. Experimental investigation of isolated aerofoil noise. Proceeding of 21st International Congress on Sound and Vibration, 2014. Unknown Publisher; 2014. [Link]
17. Sangbori M, Gharali K, Nejat A. LES modeling of a static and dynamic airfoil with the noise study of the static case. Proceeding of 6th International Conference and Exhibition on Clean Energy 2017. Unknown Publisher; 2017. [Link]
18. Williams JF, Hawkings DL. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1969;264(1151):321-342. [Link] [DOI:10.1098/rsta.1969.0031]
19. Wolf WR, Lele SK. Trailing-edge noise predictions using compressible large-eddy simulation and acoustic analogy. AIAA Journal. 2012;50(11):2423-2434. [Link] [DOI:10.2514/1.J051638]
20. Shen WZ, Zhu W, Sørensen JN. Aeroacoustic computations for turbulent airfoil flows. AIAA Journal. 2009;47(6):1518-1527. [Link] [DOI:10.2514/1.40399]
21. Ghasemian M, Nejat A. Aerodynamic Noise computation of the flow field around NACA 0012 airfoil using large eddy simulation and acoustic analogy. Journal of Computational Applied Mechanics. 2015;46(1):41-50. [Link]
22. Ghasemian M, Nejat A. Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy. Energy. 2015;88:711-717. [Link] [DOI:10.1016/j.energy.2015.05.098]
23. Ghasemian M, Nejat A. Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy. Energy Conversion and Management. 2015;99:210-220. [Link] [DOI:10.1016/j.enconman.2015.04.011]
24. Kaviani HR, Nejat A. Aerodynamic noise prediction of a MW-class HAWT using shear wind profile. Journal of Wind Engineering and Industrial Aerodynamics. 2017;168:164-176. [Link] [DOI:10.1016/j.jweia.2017.06.003]
25. Kaviani HR, Nejat A. Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm. Energy. 2017;140 Pt 1:1198-1215. [Link] [DOI:10.1016/j.energy.2017.08.011]
26. Di Francescantonio P. A new boundary integral formulation for the prediction of sound radiation. Journal of Sound and Vibration. 1997;202(4):491-509. [Link] [DOI:10.1006/jsvi.1996.0843]
27. Pope SB, Pope Stephen B. Turbulent flows. Cambridge: Cambridge University Press; 2000. [Link] [DOI:10.1017/CBO9780511840531]
28. Lilly DK. A proposed modification of the Germano subgrid‐scale closure method. Physics of Fluids A: Fluid Dynamics. 1992;4(3):633-635. [Link] [DOI:10.1063/1.858280]
29. Farassat F, Succi GP. The prediction of helicopter rotor discrete frequency noise. 38th proceeding of American Helicopter Society, Annual Forum, May 4-7, 1982, Anaheim, CA. Washington: American Helicopter Society; 1982. [Link]
30. Lockard D, Casper J. Permeable surface corrections for Ffowcs Williams and Hawkings integrals. 11th AIAA/CEAS Aeroacoustics Conference, 23-25 May 2005, Monterey, California. Reston: AIAA; 2012. [Link] [DOI:10.2514/6.2005-2995]
31. Tam N. An aeroacoustic study of airfoil self-noise for wind turbine applications [Dissertation]. Ontario: University of Waterloo; 2017. [Link]
32. Gharali K. Pitching airfoil study and freestream effects for wind turbine applications [Dissertation]. Ontario: University of Waterloo; 2013. [Link]
33. Pope SB. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics. 2004;6:35. [Link] [DOI:10.1088/1367-2630/6/1/035]
34. Coussement A, Gicquel O, Degrez G. Large eddy simulation of a pulsed jet in cross-flow. Journal of Fluid Mechanics. 2012;(695):1-34. [Link] [DOI:10.1017/jfm.2011.539]
35. Gharali K, Johnson DA. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. Journal of Fluids and Structures. 2013;42:228-244. [Link] [DOI:10.1016/j.jfluidstructs.2013.05.005]
36. Amiet RK. Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound and Vibration. 1975;41(4):407-420 [Link] [DOI:10.1016/S0022-460X(75)80105-2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.