1. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-enhanced stroke rehabilitation. IEEE Transactions On Neural Systems And Rehabilitation Engineering. 2001;9(3):308-318. [
Link] [
DOI:10.1109/7333.948460]
2. Holden MK. Virtual environments for motor rehabilitation: Review. Cyberpsychology & behavior. 2005 ;8(3):187-211. [
Link] [
DOI:10.1089/cpb.2005.8.187]
3. Li Z, Huang Z, He W, Su CY. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics. 2017;64(2):1664-1674. [
Link] [
DOI:10.1109/TIE.2016.2538741]
4. Hussain I, Salvietti G, Spagnoletti G, Malvezzi M, Cioncoloni D, Rossi S, et al. A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. Robotics and Autonomous Systems. 2017;93:1-12. [
Link] [
DOI:10.1016/j.robot.2017.03.015]
5. Bianchi M, Cempini M, Conti R, Meli E, Ridolfi A, Vitiello N, et al. Design of a series elastic transmission for hand exoskeletons. Mechatronics. 2018;51:8-18. [
Link] [
DOI:10.1016/j.mechatronics.2018.02.010]
6. Park Y, Jo I, Lee J, Bae J. A dual-cable hand exoskeleton system for virtual reality. Mechatronics. 2018;49:177-186. [
Link] [
DOI:10.1016/j.mechatronics.2017.12.008]
7. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T, et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics. 2012;17(1):136-146. [
Link] [
DOI:10.1109/TMECH.2010.2090353]
8. Agarwal P, Deshpande AD. Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation. IEEE Robotics and Automation Letters. 2018;3(1):508-515. [
Link] [
DOI:10.1109/LRA.2017.2768124]
9. Gilardi G, Haslam E, Bundhoo V, Park EJ. A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part II: Modelling and control. Robotica. 2010;28(5):675-687. [
Link] [
DOI:10.1017/S0263574709990324]
10. Agarwal P, Fox J, Yun Y, O'Malley MK, Deshpande AD. An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. The International Journal of Robotics Research. 2015;34(14):1747-1772. [
Link] [
DOI:10.1177/0278364915598388]
11. Kappassov Z, Corrales JA, Perdereau V. Tactile sensing in dexterous robot hands-review. Robotics and Autonomous Systems. 2015;74(Pt A):195-220. 25- Levangie PK, Norkin CC. Joint structure and function: A comprehensive analysis. Philadelphia: F. A. Davis; 2011. 30- Xu P, Zhao XH, Li HG. Analysis of the transmission performance and kinematics simulation of 3-RRRT parallel manipulator. Journal of Tianjin University of Technology. 2009;(3). 31- Vignais N, Marin F. Modelling the musculoskeletal system of the hand and forearm for ergonomic applications. Computer Methods in Biomechanics and Biomedical Engineering. 2011;14(suppl 1):75-76. [
Link]
12. Palli G, Melchiorri C. Friction compensation techniques for tendon-driven robotic hands. Mechatronics. 2014;24(2):108-117. [
Link] [
DOI:10.1016/j.mechatronics.2013.12.006]
13. Lee DH, Park JH, Park SW, Baeg MH, Bae JH. KITECH-hand: A highly dexterous and modularized robotic hand. IEEE/ASME Transactions on Mechatronics. 2017;22(2):876-887. [
Link] [
DOI:10.1109/TMECH.2016.2634602]
14. Liu H, Meusel P, Seitz N, Willberg B, Hirzinger G, Jin MH, et al. The modular multisensory DLR-HIT-Hand. Mechanism and Machine Theory. 2007;42(5):612-625. [
Link] [
DOI:10.1016/j.mechmachtheory.2006.04.013]
15. Borboni A, Mor M, Faglia R. Gloreha—hand robotic rehabilitation: Design, mechanical model, and experiments. Journal of Dynamic Systems, Measurement, and Control. 2016;138(11):111003. [
Link] [
DOI:10.1115/1.4033831]
16. Leonardis D, Barsotti M, Loconsole C, Solazzi M, Troncossi M, Mazzotti C, et al. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Transactions on Haptics. 2015;8(2):140-151. [
Link] [
DOI:10.1109/TOH.2015.2417570]
17. Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D,et al. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Physics of life reviews. 2016;17:1-23. [
Link] [
DOI:10.1016/j.plrev.2016.02.001]
18. Yoon D, Choi Y. Underactuated finger mechanism using contractible slider-cranks and stackable four-bar linkages. IEEE/ASME Transactions on Mechatronics. 2017;22(5):2046-2057. [
Link] [
DOI:10.1109/TMECH.2017.2723718]
19. Jones CL, Wang F, Morrison R, Sarkar N, Kamper DG. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Transactions on Mechatronics. 2014;19(1):131-140. [
Link] [
DOI:10.1109/TMECH.2012.2224359]
20. Kurita Y, Ono Y, Ikeda A, Ogasawara T. Human-sized anthropomorphic robot hand with detachable mechanism at the wrist. Mechanism and Machine Theory. 2011;46(1):53-66. [
Link] [
DOI:10.1016/j.mechmachtheory.2010.08.011]
21. Biggar S, Yao W. Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016;24(10):1071-1080. [
Link] [
DOI:10.1109/TNSRE.2016.2521544]
22. Heo P, Gu GM, Lee SJ, Rhee K, Kim J. Current hand exoskeleton technologies for rehabilitation and assistive engineering. International Journal of Precision Engineering and Manufacturing. 2012;13(5):807-824. [
Link] [
DOI:10.1007/s12541-012-0107-2]
23. Nycz CJ, Bützer T, Lambercy O, Arata J, Fischer GS, Gassert R. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robotics and Automation Letters. 2016;1(2):976-983. [
Link] [
DOI:10.1109/LRA.2016.2528296]
24. Zanotto D, Rosati G, Minto S, Rossi A. Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Transactions on Robotics. 2014;30(4):974-979. [
Link] [
DOI:10.1109/TRO.2014.2301532]
25. MA Z, Ben-Tzvi P. RML glove - an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Transactions on Mechatronics. 2015;20(2):641-652. [
Link] [
DOI:10.1109/TMECH.2014.2305842]
26. Jeong U, In HK, Cho KJ. Implementation of various control algorithms for hand rehabilitation exercise using wearable robotic hand. Intelligent Service Robotics. 2013;6(4):181-189. [
Link] [
DOI:10.1007/s11370-013-0135-5]
27. Chen J, Han D. The control of tendon-driven dexterous hands with joint simulation. Sensors (Basel). 2014;14(1):1723-1739. [
Link] [
DOI:10.3390/s140101723]
28. Ohta P, Valle L, King J, Low K, Yi J, Atkeson CG, et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves. Soft Robotics. 2018;5(2):204-215. [
Link] [
DOI:10.1089/soro.2017.0044]
29. Ohta P, Valle L, King J, Low K, Yi J, Atkeson CG, et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves. Soft Robotics. 2018;5(2):204-215. [
Link] [
DOI:10.1089/soro.2017.0044]
30. Xu P, Zhao XH, Li HG. Analysis of the transmission performance and kinematics simulation of 3-RRRT parallel manipulator. Journal of Tianjin University of Technology. 2009;(3). [
Link]
31. Vignais N, Marin F. Modelling the musculoskeletal system of the hand and forearm for ergonomic applications. Computer Methods in Biomechanics and Biomedical Engineering. 2011;14(suppl 1):75-76. [
Link] [
DOI:10.1080/10255842.2011.592369]