1. Meng X, Wang S, Cao Z, ZhangL. A review of quadruped robots and environment perception. 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27-29 July 2016. Piscataway: IEEE; 2016. [
Link] [
DOI:10.1109/ChiCC.2016.7554355]
2. Gor M, Pathak PM, Kumar Samantaray A, Yang JM. Dynamic modeling and simulation of compliant legged quadruped robot. Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013. Unknown City: Unknown Publisher; 2013. [
Link]
3. Li M, Jiang Z, Wang P, Sun L, Ge SS. Control of a quadruped robot with bionic springy legs in trotting gait. Journal of Bionic Engineering. 2014;11(2):188-198. [
Link] [
DOI:10.1016/S1672-6529(14)60043-3]
4. Zhang G, Rong X, Hui C, Li Y, Li B. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control. Advanced Robotics. 2016;30(4):284-297. [
Link] [
DOI:10.1080/01691864.2015.1113889]
5. Meng J, Li Y, Li B. A dynamic balancing approach for a quadruped robot supported by diagonal legs. International Journal of Advanced Robotic Systems. 2015;12(10). [
Link] [
DOI:10.5772/61542]
6. Ames AD, Tabuada P, Jones A, Ma WL, Rungger M, Schürmann B, et al. First steps toward formal controller synthesis for bipedal robots with experimental implementation. Nonlinear Analysis: Hybrid Systems. 2017;25:155-173. [
Link] [
DOI:10.1016/j.nahs.2017.01.002]
7. Djoudi D, Chevallereau C, Aoustin Y. Optimal reference motions for walking of a biped robot. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005. Piscataway: IEEE; 2005. [
Link]
8. Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B. Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC PRESS; 2007. [
Link]
9. Grizzle JW, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control. 2001;46(1):51-64. [
Link] [
DOI:10.1109/9.898695]
10. Grizzle JW, Chevallereau C, Sinnet RW, Ames AD. Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica. 2014;50(8):1955-1988. [
Link] [
DOI:10.1016/j.automatica.2014.04.021]
11. Akbari Hamed K, Grizzle JW. Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion. Nonlinear Analysis: Hybrid Systems. 2017;25:227-245. [
Link] [
DOI:10.1016/j.nahs.2016.08.006]
12. Yazdani M, Salarieh H, Saadat Foumani M. A Bio-inspired Distributed Hierarchical Control Framework for Walking of a 3-Link Biped Robot. Modares Mechanical Engineering. 2018;18(2):392-400. [Persian] [
Link]
13. kakaei MM, Salarieh H. A Novel robust control method for three-link underactuated planar biped robot. Modares Mechanical Engineering. 2017;17(11):47-58. [Persian] [
Link]
14. Plestan F, Grizzle JW, Westervelt ER, Abba G. Stable walking of a 7-DOF biped robot. IEEE Transactions on Robotics and Automation. 2003;19(4):653-668. [
Link] [
DOI:10.1109/TRA.2003.814514]
15. Sadeghian H, Ott C, Garofalo G, Cheng G. Passivity-based control of underactuated biped robots within hybrid zero dynamics approach. 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017, Singapore. Piscataway: IEEE; 2017. [
Link] [
DOI:10.1109/ICRA.2017.7989471]
16. Yang J, Ning J, Liu C. Locomotion control of seven-link robot with CPG-ZMP. 2016 35th Chinese Control Conference (CCC), 27-29 July 2016, Chengdu, China. Piscataway: IEEE; 2016. [
Link] [
DOI:10.1109/ChiCC.2016.7554055]
17. Yazdani M, Salarieh H, Saadat Foumani M. Decentralized control of rhythmic activities in fully-actuated/under-actuated robots. Robotics and Autonomous Systems. 2018;101:20-33. [
Link] [
DOI:10.1016/j.robot.2017.12.003]
18. Fukuda T, Hasegawa Y, Sekiyama K, Aoyama T. Multi-locomotion robotic systems: New concepts of bio-inspired robotics. Berlin: Springer; 2012. [
Link] [
DOI:10.1007/978-3-642-30135-3]
19. Morris B, Grizzle JW. A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. Proceedings of the 44th IEEE Conference on Decision and Control, 15-15 Dec. 2005, Seville, Spain. Piscataway: IEEE; 2005. [
Link]
20. Yosofvand M, Beigzadeh B, Davaei Markazi AH. Analysis of stable period-one gait of a planner passive biped with elastic links. Modares Mechanical Engineering. 2016;16(6):312-320. [
Link]