Volume 19, Issue 1 (January 2019)                   Modares Mechanical Engineering 2019, 19(1): 95-104 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yahyaei S, Zakerzadeh M, Bahrami A. Nonlinear Dynamics and Chaotic Behavior in an Oscillator Connected to Shape Memory Alloy. Modares Mechanical Engineering 2019; 19 (1) :95-104
URL: http://mme.modares.ac.ir/article-15-23339-en.html
1- Applied Design Department, Mechanical Engineering Faculty, University of Tehran, Tehran, Iran
2- Applied Design Department, Mechanical Engineering Faculty, University of Tehran, Tehran, Iran , zakerzadeh@ut.ac.ir
Abstract:   (4687 Views)
The dynamic response of shape memory alloy (SMA) systems and structures often exhibits a complex behavior due to their intrinsic nonlinear characteristics. The key characteristics of SMAs stem from adaptive dissipation associated with the hysteretic loop and huge changes in mechanical properties caused by the martensitic phase transformation. These exceptional properties have attracted attention of many researchers in various engineering fields from biomedicine to aerospace. One of the possible responses that may happen in SMA structures is the chaotic response, which can lead to a massive change in the system behavior. Moreover, such a system is highly sensitive to initial conditions. Therefore, its analysis is essential for a proper design of SMA structures. The present article discusses nonlinear dynamics and chaotic behavior in a one-degree-of-freedom (1DoF) oscillator connected to SMA at constant working temperature and pseudo elastic region. Equation of motion is formulated, using the Brinson constitutive model. Combination of structural equations of SMA and dynamical and kinematic relations, as well as forth-order Runge-Kutta scheme are employed to solve the equation governing the oscillator motion. Free and forced vibrations under the influence of harmonic stimulation force and in a wide range of excitation frequencies are presented in the form of various numerical examples. Different tools for detecting chaos, including, phase plane, time response, frequency response, Lyapunov exponent, and Poincare map are used to determine the type of motion. Numerical simulations demonstrate a wide range of periodic, quasi periodic, and chaotic responses for certain values of excitation frequencies, which is a reason for the proper understanding of the behavior of these systems.

Full-Text [PDF 1168 kb]   (3685 Downloads)    
Article Type: Original Research | Subject: Dynamics
Received: 2018/07/21 | Accepted: 2018/08/18 | Published: 2019/01/1

References
1. Savi MA. Nonlinear dynamics and chaos in shape memory alloy systems. International Journal of Non-Linear Mechanics. 2015;70:2-19. [Link] [DOI:10.1016/j.ijnonlinmec.2014.06.001]
2. Savi MA, Pacheco PMCL. Chaos and hyperchaos in shape memory systems. International Journal of Bifurcation and Chaos. 2002;12(03):645-657. [Link] [DOI:10.1142/S0218127402004607]
3. Seelecke S. Modeling the dynamic behavior of shape memory alloys. International Journal of Non-Linear Mechanics. 2002;37(8):1363-1374. [Link] [DOI:10.1016/S0020-7462(02)00030-6]
4. Machado LG, Savi MA, Pacheco PMCL. Nonlinear dynamics and chaos in coupled shape memory oscillators. International Journal of Solids and Structures. 2003;40(19):5139-5156. [Link] [DOI:10.1016/S0020-7683(03)00260-9]
5. Machado LG, Savi MA, Pacheco PMCL. Bifurcations and crises in a shape memory oscillator. Shock and Vibration. 2004;11(2):67-80. [Link] [DOI:10.1155/2004/717986]
6. Machado LG, Lagoudas DC, Savi MA. Nonlinear dynamics and chaos in a shape memory alloy pseudoelastic oscillator. Active and Passive Smart Structures and Integrated Systems. 2007;6525:65250Y. [Link]
7. Savi MA, Sá MAN, Paiva A, Pacheco PMCL. Tensile-compressive asymmetry influence on shape memory alloy system dynamics. Chaos Solitons & Fractals. 2008;36(4):828-842. [Link] [DOI:10.1016/j.chaos.2006.09.043]
8. Bernardini D, Rega G. The influence of model parameters and of the thermomechanical coupling on the behavior of shape memory devices. International Journal of Non-Linear Mechanics. 2010;45(10):933-946. [Link] [DOI:10.1016/j.ijnonlinmec.2009.11.019]
9. Bernardini D, Rega G, Litak G, Syta A. Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0-1 test. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics. 2012;227(1):17-22. [Link] [DOI:10.1177/1464419312447498]
10. Litak G, Bernardini D, Syta A, Rega G, Rysak A. Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. The European Physical Journal Special Topics. 2013;222(7):1637-1647. [Link] [DOI:10.1140/epjst/e2013-01951-7]
11. Oliveira HS, De Paula AS, Savi MA. Dynamical jumps in a shape memory alloy oscillator. Shock and Vibration. 2014;2014:656212. [Link] [DOI:10.1155/2014/656212]
12. Piccirillo V, Balthazar JM, Tusset AM, Bernardini D, Rega G. Non-linear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. International Journal of Non-Linear Mechanics. 2015;77:12-27. [Link] [DOI:10.1016/j.ijnonlinmec.2015.06.013]
13. Oliveira HDS, De Paula AS, Savi MA. Dynamical behavior of a pseudoelastic vibration absorber using shape memory alloys. Shock and Vibration. 2017;2017:7609528. [Link] [DOI:10.1155/2017/7609528]
14. Sayyaadi H, Zakerzadeh MR, Salehi H. A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests. Scientia Iranica. 2012;19(2):249-257. [Link] [DOI:10.1016/j.scient.2012.01.005]
15. Brinson LC. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures. 1993;4(2):229-242. [Link] [DOI:10.1177/1045389X9300400213]
16. Chung JH, Heo JS, Lee JJ. Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Materials and Structure. 2007;16(1):N1. [Link]
17. Basaeri H, Yousefi Koma A, Zakerzadeh MR, Mohtasebi SS. Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires. Mechatronics. 2014;24(8):1231-1241. [Link] [DOI:10.1016/j.mechatronics.2014.10.010]
18. Aguiar RAA, Savi MA, Pacheco PMCL. Experimental investigation of vibration reduction using shape memory alloys. Journal of Intelligent Material Systems and Structures. 2012;24(2):247-261. [Link] [DOI:10.1177/1045389X12461696]
19. Bernardini D, Rega G. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators. Mathematical and Computer Modelling of Dynamical Systems. 2005;11(3):291-314. [Link] [DOI:10.1080/13873950500076404]
20. Machado LG, Lagoudas DC, Savi MA. Lyapunov exponents estimation for hysteretic systems. International Journal of Solids and Structures. 2009;46(6):1269-1286. [Link] [DOI:10.1016/j.ijsolstr.2008.09.013]
21. Bernardini D, Rega G. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators. Mathematical and Computer Modelling of Dynamical Systems. 2005;11(3):291-314. [Link] [DOI:10.1080/13873950500076404]
22. Jordan D, Smith P. Nonlinear ordinary differential equations. Oxford: Oxford Press; 2007. [Link]
23. Machado LG, Lagoudas DC, Savi MA. Lyapunov exponents estimation for hysteretic systems. International Journal of Solids and Structures. 2009;46(6):1269-1286. [Link] [DOI:10.1016/j.ijsolstr.2008.09.013]
24. Strogatz SH. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. New York: Avalon Publishing; 2014. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.