1. Savi MA. Nonlinear dynamics and chaos in shape memory alloy systems. International Journal of Non-Linear Mechanics. 2015;70:2-19. [
Link] [
DOI:10.1016/j.ijnonlinmec.2014.06.001]
2. Savi MA, Pacheco PMCL. Chaos and hyperchaos in shape memory systems. International Journal of Bifurcation and Chaos. 2002;12(03):645-657. [
Link] [
DOI:10.1142/S0218127402004607]
3. Seelecke S. Modeling the dynamic behavior of shape memory alloys. International Journal of Non-Linear Mechanics. 2002;37(8):1363-1374. [
Link] [
DOI:10.1016/S0020-7462(02)00030-6]
4. Machado LG, Savi MA, Pacheco PMCL. Nonlinear dynamics and chaos in coupled shape memory oscillators. International Journal of Solids and Structures. 2003;40(19):5139-5156. [
Link] [
DOI:10.1016/S0020-7683(03)00260-9]
5. Machado LG, Savi MA, Pacheco PMCL. Bifurcations and crises in a shape memory oscillator. Shock and Vibration. 2004;11(2):67-80. [
Link] [
DOI:10.1155/2004/717986]
6. Machado LG, Lagoudas DC, Savi MA. Nonlinear dynamics and chaos in a shape memory alloy pseudoelastic oscillator. Active and Passive Smart Structures and Integrated Systems. 2007;6525:65250Y. [
Link]
7. Savi MA, Sá MAN, Paiva A, Pacheco PMCL. Tensile-compressive asymmetry influence on shape memory alloy system dynamics. Chaos Solitons & Fractals. 2008;36(4):828-842. [
Link] [
DOI:10.1016/j.chaos.2006.09.043]
8. Bernardini D, Rega G. The influence of model parameters and of the thermomechanical coupling on the behavior of shape memory devices. International Journal of Non-Linear Mechanics. 2010;45(10):933-946. [
Link] [
DOI:10.1016/j.ijnonlinmec.2009.11.019]
9. Bernardini D, Rega G, Litak G, Syta A. Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0-1 test. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics. 2012;227(1):17-22. [
Link] [
DOI:10.1177/1464419312447498]
10. Litak G, Bernardini D, Syta A, Rega G, Rysak A. Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. The European Physical Journal Special Topics. 2013;222(7):1637-1647. [
Link] [
DOI:10.1140/epjst/e2013-01951-7]
11. Oliveira HS, De Paula AS, Savi MA. Dynamical jumps in a shape memory alloy oscillator. Shock and Vibration. 2014;2014:656212. [
Link] [
DOI:10.1155/2014/656212]
12. Piccirillo V, Balthazar JM, Tusset AM, Bernardini D, Rega G. Non-linear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. International Journal of Non-Linear Mechanics. 2015;77:12-27. [
Link] [
DOI:10.1016/j.ijnonlinmec.2015.06.013]
13. Oliveira HDS, De Paula AS, Savi MA. Dynamical behavior of a pseudoelastic vibration absorber using shape memory alloys. Shock and Vibration. 2017;2017:7609528. [
Link] [
DOI:10.1155/2017/7609528]
14. Sayyaadi H, Zakerzadeh MR, Salehi H. A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests. Scientia Iranica. 2012;19(2):249-257. [
Link] [
DOI:10.1016/j.scient.2012.01.005]
15. Brinson LC. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures. 1993;4(2):229-242. [
Link] [
DOI:10.1177/1045389X9300400213]
16. Chung JH, Heo JS, Lee JJ. Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Materials and Structure. 2007;16(1):N1. [
Link]
17. Basaeri H, Yousefi Koma A, Zakerzadeh MR, Mohtasebi SS. Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires. Mechatronics. 2014;24(8):1231-1241. [
Link] [
DOI:10.1016/j.mechatronics.2014.10.010]
18. Aguiar RAA, Savi MA, Pacheco PMCL. Experimental investigation of vibration reduction using shape memory alloys. Journal of Intelligent Material Systems and Structures. 2012;24(2):247-261. [
Link] [
DOI:10.1177/1045389X12461696]
19. Bernardini D, Rega G. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators. Mathematical and Computer Modelling of Dynamical Systems. 2005;11(3):291-314. [
Link] [
DOI:10.1080/13873950500076404]
20. Machado LG, Lagoudas DC, Savi MA. Lyapunov exponents estimation for hysteretic systems. International Journal of Solids and Structures. 2009;46(6):1269-1286. [
Link] [
DOI:10.1016/j.ijsolstr.2008.09.013]
21. Bernardini D, Rega G. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators. Mathematical and Computer Modelling of Dynamical Systems. 2005;11(3):291-314. [
Link] [
DOI:10.1080/13873950500076404]
22. Jordan D, Smith P. Nonlinear ordinary differential equations. Oxford: Oxford Press; 2007. [
Link]
23. Machado LG, Lagoudas DC, Savi MA. Lyapunov exponents estimation for hysteretic systems. International Journal of Solids and Structures. 2009;46(6):1269-1286. [
Link] [
DOI:10.1016/j.ijsolstr.2008.09.013]
24. Strogatz SH. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. New York: Avalon Publishing; 2014. [
Link]