Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2697-2704 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shafiei M, Azadian A. Discrete-Time Control of a Nonlinear System with Integrating the Integral Terminal Sliding Mode and Model Predictive Control. Modares Mechanical Engineering 2019; 19 (11) :2697-2704
URL: http://mme.modares.ac.ir/article-15-24208-en.html
1- Department of Electrical & Electronic Engineering, Shiraz University of Technology, Shiraz, Iran , shafiei@sutech.ac.ir
2- Department of Electrical & Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
Abstract:   (3013 Views)

In this paper, a sliding mode predictive control method is proposed for function improvement of affine discrete-time nonlinear systems using integral terminal sliding mode method (ITSMC). The proposed method is based on the integration of terminal integral sliding mode method and model predictive controller which leads to using the advantages of both methods. Indeed, in the proposed method, integral and terminal characteristics of terminal integral sliding mode method are used to design the sliding surface in order to reduce the error (in reaching phase) and to converge to the origin (in sliding phase). Moreover, the chattering phenomenon which usually exists in sliding mode based methods will be decreased using the model predictive controller. The proposed control method has the capability to eliminate the effect of external disturbances and uncertainties. In this paper, it is shown that the model predictive method decreases the chattering phenomenon more than using the saturation function in the control law of the sliding mode method. In addition, using numerical and functional examples, the performance of the proposed method in improving the quality of the system response in the presence of external disturbances and uncertainties is illustrated.

Full-Text [PDF 905 kb]   (2398 Downloads)    
Article Type: Original Research | Subject: Control
Received: 2018/08/18 | Accepted: 2019/05/21 | Published: 2019/11/21

1. DeCarlo RA, Zak SH, Matthews GP. Variable structure control of nonlinear multivariable systems: a tutorial. Proceedings of the IEEE. 1998;79(3):212-232. [Link] [DOI:10.1109/5.4400]
2. Shirvani F, Shafiei MH. Robust output regulation via sliding mode control and disturbance observer: application in a forced Van Der Pol chaotic oscillator. Journal of Dynamic Systems, Measurement, and Control. 2017;139(9):091015. [Link] [DOI:10.1115/1.4036235]
3. Zhou JS, Liu ZY, Pei R. A new nonlinear model predictive control scheme for discrete-time system based on sliding mode control. American Control Conference. Arlington, VA: Crystal Gateway Marriot; 2001. [Link]
4. Plaza D, De Keyser R, Bonilla J. Model predictive and sliding mode control of a boost converter. International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia, Italy; 2008. [Link] [DOI:10.1109/SPEEDHAM.2008.4581242]
5. Montaseri G, Yazdanpanah MJ. A model predictive control approach to predict sliding surface. IFAC Proceedings Volumes. 2008;41(2):9894-9898. [Link] [DOI:10.3182/20080706-5-KR-1001.01674]
6. Raimondo DM, Rubagotti M, Jones CN, Magni L, Ferrara A, Morari M. Multirate sliding mode disturbance compensation for model predictive control. International Journal of Robust Nonlinear Control. 2015;25(16):2984-3003. [Link] [DOI:10.1002/rnc.3244]
7. Wang Y, Chen W, Tomizuka M, Alsuwaidan BN. Model predictive sliding mode control: for constraint satisfaction and robustness. ASME 2013 Dynamic Systems and Control Conference. Palo Alto, California; 2013. [Link] [DOI:10.1115/DSCC2013-4067]
8. Steinberger M, Castillo I, Horn M, Fridman L. Model predictive output integral sliding mode control. 14th International Workshop on Variable Structure Systems. Nanjing, China; 2016. [Link] [DOI:10.1109/VSS.2016.7506921]
9. Xu Q, Li Y. Micro-nanopositioning using model predictive output integral discrete sliding mode control. IEEE Transactions on Industrial Electronics. 2012;59(2):1161-1170. [Link] [DOI:10.1109/TIE.2011.2157287]
10. Bennatie SE, Tebbani S, Dumur D. Hierarchical control strategy based on robust MPC and integral sliding mode application to a continuous photobioreactor. IFAC-PapersOnLine. 2015;48(23):212-217. [Link] [DOI:10.1016/j.ifacol.2015.11.285]
11. Morgan J, Ozguner U. A decentralized variable structure control algorithm for robotic manipulators. IEEE Journal on Robotics and Automation. 1985;1(1):57-65. [Link] [DOI:10.1109/JRA.1985.1086998]
12. Abidi K, Xu JX, She JH. A discrete-time terminal sliding-mode control approach applied to a motion control problem. IEEE Transactions on Industrial Electronics. 2009;56(9):3619-3627. [Link] [DOI:10.1109/TIE.2008.2010203]
13. Xu Q. Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system. IEEE Transactions on Industrial Electronics. 2016;63(6):3976-3984. [Link] [DOI:10.1109/TIE.2015.2504343]
14. Sciavicco L, Siciliano B. Modelling and control of robot manipulators. London: Springer-Verlag, 2000. [] [DOI:10.1007/978-1-4471-0449-0]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.