1. Corpino S, Caldera M, Nichele F, Masoero M, Viola N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica. 2015;115:247-261. [
Link] [
DOI:10.1016/j.actaastro.2015.05.012]
2. Mansour Dehghan M, Ebrahimi M, Negaresh O. Small satellite thermal control sub-system conceptual design optimization methodology. Modares Mechanical Engineering. 2016;16(8):218-228. [Persian] [
Link]
3. Yang Y, Zhang D, Li A. Layout optimization of spacecraft-based solar array under partially shaded conditions. Solar Energy. 2018;167:84-94. [
Link] [
DOI:10.1016/j.solener.2018.03.080]
4. Qin Z, Liang YG, Zhou JP. An optimization tool for satellite equipment layout. Advances in Space Research. 2018;61(1):223-234. [
Link] [
DOI:10.1016/j.asr.2017.10.030]
5. Xiao RB, Xu YC, Amos M. Two hybrid compaction algorithms for the layout optimization problem. Biosystems. 200;90(2):560-567. [
Link] [
DOI:10.1016/j.biosystems.2006.12.007]
6. Cuco APC, De Sousa FL, Vlassov VV, Da Silva Neto AJ. Multi-objective design optimization of a new space radiator. Optimization and Engineering. 2011;12(3):393-406. [
Link] [
DOI:10.1007/s11081-011-9142-6]
7. Pérez-Grande I, Sanz-Andrés A, Guerra C, Alonso G. Analytical study of the thermal behaviour and stability of a small satellite. Applied Thermal Engineering. 2009;29(11-12):2567-2573. [
Link] [
DOI:10.1016/j.applthermaleng.2008.12.038]
8. Torres A, Mishkinis D, Kaya T. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction. Applied Thermal Engineering. 2014;65(1-2):623-632. [
Link] [
DOI:10.1016/j.applthermaleng.2013.11.040]
9. Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Applied Thermal Engineering. 2016;105:490-500. [
Link] [
DOI:10.1016/j.applthermaleng.2016.03.024]
10. Farrahi A, Pérez-Grande I. Simplified analysis of the thermal behavior of a spinning satellite flying over Sun-synchronous orbits. Applied Thermal Engineering. 2017;125:1146-1156. [
Link] [
DOI:10.1016/j.applthermaleng.2017.07.033]
11. Arduini C, Laneve G, Folco S. Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronautica. 1998;43(9-10):473-479. [
Link] [
DOI:10.1016/S0094-5765(98)00180-5]
12. Gadalla MA. Prediction of temperature variation in a rotating spacecraft in space environment. Applied Thermal Engineering. 2005;25(14-15):2379-2397. [
Link] [
DOI:10.1016/j.applthermaleng.2004.12.018]
13. 13 Kovács R, Józsa V. Thermal analysis of the SMOG-1 PocketQube satellite. Applied Thermal Engineering. 2018;139:506-513. [
Link] [
DOI:10.1016/j.applthermaleng.2018.05.020]
14. Yang C, Hou X, Wang L. Thermal design, analysis and comparison on three concepts of space solar power satellite. Acta Astronautica. 2017;137:382-402. [
Link] [
DOI:10.1016/j.actaastro.2017.05.004]
15. Mashaei PR, Shahryari M. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling. Acta Astronautica. 2015;111:345-355. [
Link] [
DOI:10.1016/j.actaastro.2015.02.003]
16. Junzhou H, Yanjun Sh, Hongfei T. Layout design of a satellite module using a human-guided genetic algorithm. International Conference on Computational Intelligence and Security, 3-6 Nov 2006, Guangzhou, China. Piscataway: IEEE; 2006. [
Link] [
DOI:10.1109/ICCIAS.2006.294127]
17. Zhu JH, Zhang WH, Beckers P. Multi-component layout design with coupled shape and topology optimization. International Journal for Simulation and Multidisciplinary Design Optimization. 2008;2(3):167-176. [
Link] [
DOI:10.1051/ijsmdo:2008023]
18. Zhang B, Teng HF, Shi YJ. Layout optimization of satellite module using soft computing techniques. Applied Soft Computing. 2008;8(1):507-521. [
Link] [
DOI:10.1016/j.asoc.2007.03.004]
19. Fakoor M, Taghinezhad M, Kosari AR. Design of configuration and layout optimization in GEO satellite. Modares Mechanical Engineering. 2015;15(1):339-351. [Persian] [
]
20. Fakoor M, Taghinezhad M, Kosari A. Review of method for optimal layout of satellite components. Modares Mechanical Engineering. 2013;13(9):126-137. [Persian] [
Link]
21. Fakoor M, Mohammad Zadeh P, Momeni Eskandari H. Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints. Aerospace Science and Technology. 2017;71:172-188. [
Link] [
DOI:10.1016/j.ast.2017.09.012]
22. Chang YK, Kang MY, Park JH, Choi YJ. A study on thermal modeling and heat load mitigation for satellite electronic components. 15th Annual AIAA/USU Conference on Small Satellites. North Logan: Small Satellite Conference; 2001. [
Link]
23. Lyon R, Sellers J, Underwood C. Small satellite thermal modeling and design at USAFA: FalconSat-2 applications. IEEE Aerospace Conference, 9-16 March 2002, Big Sky, MT, USA. Piscataway: IEEE; 2002. [
Link]
24. Elhady AM. Design and analysis of a LEO micro-satellite thermal control including thermal contact conductance. IEEE Aerospace Conference, 6-13 March 2010, Big Sky, MT, USA. Piscataway: IEEE; 2010. [
Link] [
DOI:10.1109/AERO.2010.5446763]
25. Hengeveld DW, Braun JE, Groll EA, Williams AD. Optimal placement of electronic components to minimize heat flux nonuniformities. Journal of Spacecraft and Rockets. 2011;48(4):556-563. [
Link] [
DOI:10.2514/1.47507]
26. Ghasemi M, Salami A. The principles of thermal design of small satellites. Tehran: Iran university of science and technology (IUST); 2000. [Persian] [
Link]