Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2581-2588 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadgar fard A, Rajabi M. Self-Activated Acoustical Swimmer and Functionality Comparison with Equivalent Hydrodynamic Swimmers: Spherical Model at Low Reynolds Number Condition. Modares Mechanical Engineering 2019; 19 (11) :2581-2588
URL: http://mme.modares.ac.ir/article-15-24495-en.html
1- Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
2- Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran , majid_rajabi@iust.ac.ir
Abstract:   (5296 Views)
In this paper, a simple, practical and versatile model has been developed for a self-activated acoustic driven spherical swimmer that its surface may oscillate partially at dipole state (first mode of vibration). Regard to the nonlinear acoustic effects, the net acoustic radiation force exerted on the device is analytically derived and the non-zero states are approved. Considering hydrodynamics effects assuming low Reynolds number operating condition, the effects of active section angle and frequency of operation on the force, velocity and requirement power of swimmer are discussed. It is shown that comparing with many types of artificial and natural living matter swimmers, the swimming velocity of the developed model is satisfactory. The challenge of the random walk due to host medium fluctuations is discussed, and it is shown that the developed model can overcome the ubiquity of the Brownian motion, as well. Due to the simplicity of the developed model which leads to computing the swimmer features (such as force, velocity, etc.) analytically, this study can be considered for development of contact-free precise handling, drug distribution and delivery systems, entrapment technology of active carriers and the self-propulsive controllable devices which are essential in many engineering and medicine applications.
Full-Text [PDF 1039 kb]   (1588 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/08/27 | Accepted: 2019/05/21 | Published: 2019/11/21

1. 1- Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature. 2000;405(6785):417. [Link] [DOI:10.1038/35013140]
2. Ishiyama K, Sendoh M, Yamazaki A, Arai KI. Swimming micro-machine driven by magnetic torque. Sensors and Actuators A: Physical. 2001;91(1-2):141-144. [Link] [DOI:10.1016/S0924-4247(01)00517-9]
3. Childress S. Mechanics of swimming and flying. Cambridge: Cambridge University Press; 1981. [Link] [DOI:10.1017/CBO9780511569593]
4. Purcell EM. Life at low reynolds number. American Journal of Physics. 1977;45(1):3-11. [Link] [DOI:10.1119/1.10903]
5. Purcell EM. The efficiency of propulsion by a rotating flagellum. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(21):11307-11311. [Link] [DOI:10.1073/pnas.94.21.11307]
6. Najafi A, Golestanian R. Simple swimmer at low reynolds number: Three linked spheres. Physical Review E. 2004;69(6):062901. [Link] [DOI:10.1103/PhysRevE.69.062901]
7. Golestanian R. Three-sphere low-reynolds-number swimmer with a cargo container. The European Physical Journal E. 2008;25(1):1-4. [Link] [DOI:10.1140/epje/i2007-10276-2]
8. Mojahed A, Rajabi M. Self-motile swimmers: Ultrasound driven spherical model. Ultrasonics. 2018;86:1-5. [Link] [DOI:10.1016/j.ultras.2018.01.006]
9. Tierno P, Golestanian R, Pagonabarraga I, Sagués F. Magnetically actuated colloidal microswimmers. The Journal of Physical Chemistry B. 2008;112(51):16525-16528. [Link] [DOI:10.1021/jp808354n]
10. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. Microscopic artificial swimmers. Nature. 2005;437:862-865. [Link] [DOI:10.1038/nature04090]
11. Paxton WF, Sen A, Mallouk TE. Motility of catalytic nanoparticles through self‐generated forces. Chemistry. 2005;11(22):6462-6470. [Link] [DOI:10.1002/chem.200500167]
12. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. Self-motile colloidal particles: From directed propulsion to random walk. Physical Review Letters. 2007;99(4):048102. [Link] [DOI:10.1103/PhysRevLett.99.048102]
13. Jiang HR, Yoshinaga N, Sano M. Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Physical Review Letters. 2010;105(26):268302. [Link] [DOI:10.1103/PhysRevLett.105.268302]
14. Mercier MJ, Ardekani AM, Allshouse MR, Doyle B, Peacock T. Self-propulsion of immersed objects via natural convection. Physical Review Letters. 2014;112(20):204501. [Link] [DOI:10.1103/PhysRevLett.112.204501]
15. Lighthill MJ. On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers. Communications on Pure and Applied Mathematics. 1952;5(2):109-118. [Link] [DOI:10.1002/cpa.3160050201]
16. Lin Z, Thiffeault JL, Childress S. Stirring by squirmers. Journal of Fluid Mechanics. 2011;669:167-177. [Link] [DOI:10.1017/S002211201000563X]
17. Wang S, Ardekani A. Inertial squirmer. Physics of Fluids. 2012;24:101902. [Link] [DOI:10.1063/1.4758304]
18. Rallison JM. The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz. Journal of Fluid Mechanics. 1996;323:411. [Link] [DOI:10.1017/S0022112096220981]
19. Ajdari A, Stone HA. A note on swimming using internally generated traveling waves. Physics of Fluids. 1999;11(5):1275. [Link] [DOI:10.1063/1.869991]
20. Pierce AD. Acoustics: An introduction to its physical principles and applications. Unknown City: Acoustical Society of America; 1989. [Link]
21. Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N. Acoustic radiation pressure acting on spherical and cylindrical shells. The Journal of the Acoustical Society of America. 1993;93(1):154. [Link] [DOI:10.1121/1.405653]
22. Marston PL. Axial radiation force of a bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America. 2006;120(6):3518. [Link] [DOI:10.1121/1.2361185]
23. Marston PL. Negative axial radiation forces on solid spheres and shells in a bessel beam. The Journal of the Acoustical Society of America. 2007;122(6):3162. [Link] [DOI:10.1121/1.2799501]
24. Rajabi M, Behzad M. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells. Journal of Sound and Vibration. 2014;333(22):5746-5761. [Link] [DOI:10.1016/j.jsv.2014.05.014]
25. Happel J, Brenner H. Low reynolds number hydrodynamics: With special applications to particulate media. Berlin: Springer; 1983. [Link]
26. Stone HA, Samuel AD. Propulsion of microorganisms by surface distortions. Physical Review Letters. 1996;77(19):4102. [Link] [DOI:10.1103/PhysRevLett.77.4102]
27. Berg HC. Random walks in biology. Princeton: Princeton University Press; 1993. [Link]
28. Taylor G. Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1951;209(1099):447-461. [Link] [DOI:10.1098/rspa.1951.0218]
29. Doinikov A. Acoustic radiation pressure on a rigid sphere in a viscous fluid. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences. 1994;447(1931):447-466. [Link] [DOI:10.1098/rspa.1994.0150]
30. Doinikov AA. Theory of acoustic radiation pressure for actual fluids. Physical Review E. 1996;54(6):6297. [Link] [DOI:10.1103/PhysRevE.54.6297]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.