1. 1- Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature. 2000;405(6785):417. [
Link] [
DOI:10.1038/35013140]
2. Ishiyama K, Sendoh M, Yamazaki A, Arai KI. Swimming micro-machine driven by magnetic torque. Sensors and Actuators A: Physical. 2001;91(1-2):141-144. [
Link] [
DOI:10.1016/S0924-4247(01)00517-9]
3. Childress S. Mechanics of swimming and flying. Cambridge: Cambridge University Press; 1981. [
Link] [
DOI:10.1017/CBO9780511569593]
4. Purcell EM. Life at low reynolds number. American Journal of Physics. 1977;45(1):3-11. [
Link] [
DOI:10.1119/1.10903]
5. Purcell EM. The efficiency of propulsion by a rotating flagellum. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(21):11307-11311. [
Link] [
DOI:10.1073/pnas.94.21.11307]
6. Najafi A, Golestanian R. Simple swimmer at low reynolds number: Three linked spheres. Physical Review E. 2004;69(6):062901. [
Link] [
DOI:10.1103/PhysRevE.69.062901]
7. Golestanian R. Three-sphere low-reynolds-number swimmer with a cargo container. The European Physical Journal E. 2008;25(1):1-4. [
Link] [
DOI:10.1140/epje/i2007-10276-2]
8. Mojahed A, Rajabi M. Self-motile swimmers: Ultrasound driven spherical model. Ultrasonics. 2018;86:1-5. [
Link] [
DOI:10.1016/j.ultras.2018.01.006]
9. Tierno P, Golestanian R, Pagonabarraga I, Sagués F. Magnetically actuated colloidal microswimmers. The Journal of Physical Chemistry B. 2008;112(51):16525-16528. [
Link] [
DOI:10.1021/jp808354n]
10. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. Microscopic artificial swimmers. Nature. 2005;437:862-865. [
Link] [
DOI:10.1038/nature04090]
11. Paxton WF, Sen A, Mallouk TE. Motility of catalytic nanoparticles through self‐generated forces. Chemistry. 2005;11(22):6462-6470. [
Link] [
DOI:10.1002/chem.200500167]
12. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. Self-motile colloidal particles: From directed propulsion to random walk. Physical Review Letters. 2007;99(4):048102. [
Link] [
DOI:10.1103/PhysRevLett.99.048102]
13. Jiang HR, Yoshinaga N, Sano M. Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Physical Review Letters. 2010;105(26):268302. [
Link] [
DOI:10.1103/PhysRevLett.105.268302]
14. Mercier MJ, Ardekani AM, Allshouse MR, Doyle B, Peacock T. Self-propulsion of immersed objects via natural convection. Physical Review Letters. 2014;112(20):204501. [
Link] [
DOI:10.1103/PhysRevLett.112.204501]
15. Lighthill MJ. On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers. Communications on Pure and Applied Mathematics. 1952;5(2):109-118. [
Link] [
DOI:10.1002/cpa.3160050201]
16. Lin Z, Thiffeault JL, Childress S. Stirring by squirmers. Journal of Fluid Mechanics. 2011;669:167-177. [
Link] [
DOI:10.1017/S002211201000563X]
17. Wang S, Ardekani A. Inertial squirmer. Physics of Fluids. 2012;24:101902. [
Link] [
DOI:10.1063/1.4758304]
18. Rallison JM. The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz. Journal of Fluid Mechanics. 1996;323:411. [
Link] [
DOI:10.1017/S0022112096220981]
19. Ajdari A, Stone HA. A note on swimming using internally generated traveling waves. Physics of Fluids. 1999;11(5):1275. [
Link] [
DOI:10.1063/1.869991]
20. Pierce AD. Acoustics: An introduction to its physical principles and applications. Unknown City: Acoustical Society of America; 1989. [
Link]
21. Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N. Acoustic radiation pressure acting on spherical and cylindrical shells. The Journal of the Acoustical Society of America. 1993;93(1):154. [
Link] [
DOI:10.1121/1.405653]
22. Marston PL. Axial radiation force of a bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America. 2006;120(6):3518. [
Link] [
DOI:10.1121/1.2361185]
23. Marston PL. Negative axial radiation forces on solid spheres and shells in a bessel beam. The Journal of the Acoustical Society of America. 2007;122(6):3162. [
Link] [
DOI:10.1121/1.2799501]
24. Rajabi M, Behzad M. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells. Journal of Sound and Vibration. 2014;333(22):5746-5761. [
Link] [
DOI:10.1016/j.jsv.2014.05.014]
25. Happel J, Brenner H. Low reynolds number hydrodynamics: With special applications to particulate media. Berlin: Springer; 1983. [
Link]
26. Stone HA, Samuel AD. Propulsion of microorganisms by surface distortions. Physical Review Letters. 1996;77(19):4102. [
Link] [
DOI:10.1103/PhysRevLett.77.4102]
27. Berg HC. Random walks in biology. Princeton: Princeton University Press; 1993. [
Link]
28. Taylor G. Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1951;209(1099):447-461. [
Link] [
DOI:10.1098/rspa.1951.0218]
29. Doinikov A. Acoustic radiation pressure on a rigid sphere in a viscous fluid. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences. 1994;447(1931):447-466. [
Link] [
DOI:10.1098/rspa.1994.0150]
30. Doinikov AA. Theory of acoustic radiation pressure for actual fluids. Physical Review E. 1996;54(6):6297. [
Link] [
DOI:10.1103/PhysRevE.54.6297]