Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1943-1952 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei Z, Talafi Noghni M, Shaeri M, Ansarian I. Microstructure, Mechanical, and Electrical Properties of Cu-30Zn Alloys Produced by Multi-Directional Forging. Modares Mechanical Engineering 2019; 19 (8) :1943-1952
URL: http://mme.modares.ac.ir/article-15-24518-en.html
1- Materials Science & Engineering Department, Technical & Engineering Faculty, Imam Khomeini International University (IKIU), Qazvin, Iran
2- Materials Science & Engineering Department, Technical & Engineering Faculty, Imam Khomeini International University (IKIU), Qazvin, Iran , noghani@eng.ikiu.ac.ir
Abstract:   (4218 Views)
In this research, Cu-30Zn alloy was subjected to severe plastic deformation (SPD) by Multi-Directional Forging (MDF) process up to 6 passes at room temperature. After the samples fabrication, microstructure, mechanical, and electrical properties were investigated. Mechanical properties of the samples were measured by shear punch, tensile, and hardness tests at room temperature after each pass of MDF process. In addition, electrical properties of the samples were evaluated by Eddy Current method. The results of microstructure characterization by scanning electron microscopy equipped with EBSD attachment showed that the grain size of the initial annealed specimen reduced from about 230 µm to less than 1 µm, after 6 passes of MDF process. Furthermore, grain size reduction was accompanied by slip process, formation of twinning, and shear bonds in a specific direction. According to the results, mechanical properties were significantly improved after 6 passes of MDF. MDF process led to a 212% increase in hardness, enhancement of 105% and 73% in shear yield and ultimate shear strengths, and also improvement of 298% and 190% in tensile yield and ultimate tensile strengths, respectively. The results of the electrical conductivity showed that the electrical conductivity of the Cu-30Z alloy reduced slightly during the MDF process. Comparison of mechanical and electrical properties results demonstrated that high-strength alloys can be obtained in the MDF process without significantly reduction in the electrical conductivity.
Full-Text [PDF 2005 kb]   (1335 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/08/27 | Accepted: 2019/01/26 | Published: 2019/08/12

1. Song KH, Kim HS, Kim WY. Enhancement of mechanical properties and grain refinement in ecap 6/4 brass. Reviews on Advanced Materials Science. 2011;28(2):158-161. [Link]
2. Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia. 2013;61(3):782-817. [Link] [DOI:10.1016/j.actamat.2012.10.038]
3. Vo KD, Tieu AK, Zhu HT, Kosasih PB. The influence of high temperature due to high adhesion condition on rail damage. Wear. 2015;330-331:571-580. [Link] [DOI:10.1016/j.wear.2015.01.059]
4. Kawasaki M, Figueiredo RB, Langdon TG. Twenty-five years of severe plastic deformation: Recent developments in evaluating the degree of homogeneity through the thickness of disks processed by high-pressure torsion. Journal of Materials Science. 2012;47(22):7719-7725. [Link] [DOI:10.1007/s10853-012-6507-y]
5. Talafi Noghani M, Shaeri MH, Esmaeili A, Razaghian A. Effect of severe plastic deformation by equal channel angular pressing on fracture toughness of Al-7075 alloy. Modares Mechanical Engineering. 2018;17(12):11-20. [Persian] [Link]
6. Ansarian I, Shaeri MH. Diffusional bonds in laminated composites produced by ECAP. Transactions of Nonferrous Metals Society of China. 2017;27(9):1928-1938. [Link] [DOI:10.1016/S1003-6326(17)60217-6]
7. Chegini M, Shaeri MH. Effect of equal channel angular pressing on the mechanical and tribological behavior of Al-Zn-Mg-Cu alloy. Materials Characterization. 2018;140:147-161. [Link] [DOI:10.1016/j.matchar.2018.03.045]
8. Esmaeili A, Shaeri MH, Talafi Noghani M, Razaghian A. Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. Journal of Alloys and Compounds. 2018;757:324-332. [Link] [DOI:10.1016/j.jallcom.2018.05.085]
9. Naseri R, Shariati M, Kadkhodayan M. Effect of work-piece cross section on the mechanical properties of commercially pure titanium produced by Equal Channel Angular Pressing. Modares Mechanical Engineering. 2015;15(6):157-166. [Persian] [Link]
10. Naseri R, Kadkhodayan M, Shariati M, The investigation of spring-back of UFG commercially pure titanium in three-point bending test. Modares Mechanical Engineering. 2017;16(11):266-276. [Persian] [Link]
11. Tang L, Liu C, Chen Z, Ji D, Xiao H. Microstructures and tensile properties of Mg-Gd-Y-Zr alloy during multidirectional forging at 773 K. Materials and Design. 2013;50:587-596. [Link] [DOI:10.1016/j.matdes.2013.03.054]
12. Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG. Influence of stacking fault energy on nanostructure formation under high pressure torsion. Materials Science and Engineering A. 2005;410-411:188-193. [Link] [DOI:10.1016/j.msea.2005.08.074]
13. Pasebani S, Toroghinejad MR. Nano-grained 70/30 brass strip produced by Accumulative Roll-Bonding (ARB) process. Materials Science and Engineering A. 2010;527(3):491-497. [Link] [DOI:10.1016/j.msea.2009.09.029]
14. Głuchowski W, Stobrawa JP, Rdzawski ZM. Microstructure refinement of selected copper alloys strips processed by SPD method. Archives of Materials Science and engineering. 2011;47(2):103-109. [Link]
15. Dutkiewicz J, Masdeu F, Malczewski P, Kukuła A. Microstructure and properties of α + β brass after ECAP processing. Archives of Materials Science and Engineering. 2009;39(2):80-83. [Link]
16. Miura H, Itabashi I, Yu G, Sakai T. Grain refinement of coarse grained gold by combined thermo-mechanical process of severe plastic deformation and low temperature annealing. Journal of Physics Conference Series. 2010;240(1):012116. [Link] [DOI:10.1088/1742-6596/240/1/012116]
17. Gubicza J, Dobatkin SV, Khosravi E, Kuznetsov AA, Lábár JL. Microstructural stability of Cu processed by different routes of severe plastic deformation. Materials Science and Engineering A. 2011;528(3):1828-1832. [Link] [DOI:10.1016/j.msea.2010.11.026]
18. Zhu QF, Li L, Ban CY, Zhao ZH, Zuo YB, Cui JZ. Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature. Transactions of Nonferrous Metals Society of China. 2014;24(5):1301-1306. [Link] [DOI:10.1016/S1003-6326(14)63192-7]
19. Odnobokova M, Kipelova A, Belyakov A, Kaibyshev R. Microstructure evolution in a 316L stainless steel subjected to multidirectional forging and unidirectional bar rolling. IOP Conference Series Materials Science and Engineering. 2014;63(1):012060. [Link] [DOI:10.1088/1757-899X/63/1/012060]
20. Shakhova I, Yanushkevich Z, Fedorova I, Belyakov A, Kaibyshev R. Grain refinement in a Cu-Cr-Zr alloy during multidirectional forging. Materials Science and Engineering A. 2014;606:380-389. [Link] [DOI:10.1016/j.msea.2014.03.116]
21. Nie KB, Wang XJ, Deng KK, Xu FJ, Wu K, Zheng MY. Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions. Journal of Alloys and Compounds. 2014;617:979-987. [Link] [DOI:10.1016/j.jallcom.2014.08.148]
22. Yang XY, Sun ZY, Xing J, Miura H, Sakai T. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Transactions of Nonferrous Metals Society of China. 2008;18 Suppl 1:s200-s204. [Link] [DOI:10.1016/S1003-6326(10)60202-6]
23. Dashti AR, Shaeri MH, Taghiabadi R, Djavanroodi F, Vali Ghazvini F, Javadi H. Microstructure, texture, electrical and mechanical properties of AA-6063 processed by multi directional forging. Materials (Basel). 2018;11(12):2419. [Link] [DOI:10.3390/ma11122419]
24. Ansarian I, Shaeri MH, Ebrahimi M, Minárik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. Journal of Alloys and Compounds. 2019;776:83-95. [Link] [DOI:10.1016/j.jallcom.2018.10.196]
25. Miura H, Nakao Y, Sakai T. Enhanced grain refinement by mechanical twinning in a bulk Cu-30 mass%Zn during multi-directional forging. Materials Transactions. 2007;48(9):2539-2541. [Link] [DOI:10.2320/matertrans.MRP2007123]
26. Nakao Y, Miura H, Sakai T. Recrystallization behavior of nano grained Cu-Zn Alloy produced by multi-directional forging. Materials Science Forum. 2007;558-559:1329-1334. [Link] [DOI:10.4028/www.scientific.net/MSF.558-559.1329]
27. Dasharath SM, Mula S. Mechanical properties and fracture mechanisms of ultrafine grained Cu-9.6% Zn alloy processed by multiaxial cryoforging. Materials Science and Engineering A. 2016;675:403-414. [Link] [DOI:10.1016/j.msea.2016.08.086]
28. Akbaripanah F, Salavati MA, Mahmudi R. The influences of extrusion and Multi-Directional Forging (MDF) processes on microstructure, shear strength and microhardness of AM60 magnesium alloy. Modares Mechanical Engineering. 2017;16(11):409-416. [Persian] [Link]
29. Ansarian I, Shaeri MH, Ebrahimi M. Utilization of multi directional forging for fabrication of ultrafine-grained pure titanium. Modares Mechanical Engineering. 2018;18(2):371-382. [Persian] [Link]
30. Akbaripanah F, Fereshteh Saniee F, Mahmudi R, Kim HK. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Materials & Design. 2013;43:31-39. [Link] [DOI:10.1016/j.matdes.2012.06.051]
31. Fukutomi H, Takagi S, Aoki K, Nobuki M, Mecking H, Kamijo T. Effect of deformation conditions on texture formation during dynamic recrystallization of the intermetallic compound TiAl. Scripta Metallurgica et Materiala. 1991;25(7):1681-1684. [Link] [DOI:10.1016/0956-716X(91)90474-F]
32. Miura H, Sakai T, Ueno T, Takebayashi Sh, Fujita N, Yoshinaga N. Promotion of ultrafine grain evolution by coarse particles during multidirectional forging of Ni-Fe alloy. Metallurgical and Materials Transactions A. 2009;40(9):2137-2144. [Link] [DOI:10.1007/s11661-009-9912-3]
33. Fadhil AA, Enab TA, Samuel M, Iskander BA, Ajeel SA. Study on the effect of production parameters and raw materials used on the mechanical properties of leaded brass (CuZn40Pb2) alloy. World Journal of Engineering and Technology. 2017;5(2):340-349. [Link] [DOI:10.4236/wjet.2017.52028]
34. Karimi M, Toroghinejad MR, Dutkiewicz J. Nanostructure formation during accumulative roll bonding of commercial purity titanium. Materials Characterization. 2016;122:98-103. [Link] [DOI:10.1016/j.matchar.2016.10.024]
35. Nejadseyfi O, Shokuhfar A, Moodi V. Segmentation of copper alloys processed by equal-channel angular pressing. Transactions of Nonferrous Metals Society of China. 2015;25(8):2571-2580. [Link] [DOI:10.1016/S1003-6326(15)63877-8]
36. Dieter GE. Mechanical metallurgy. Tehran: Nashr Daneshgahi; 1990. pp. 283-284. [Persian] [Link]
37. Hankin GL, Toloczko MB, Hamilton ML, Faulkner RG. Validation of the shear punch-tensile correlation technique using irradiated materials. Journal of Nuclear Materials. 1998;258-263(Pt 2):1651-1656. [Link] [DOI:10.1016/S0022-3115(98)00203-7]
38. Mahmudi R, Sadeghi M. Correlation between shear punch and tensile strength for low-carbon steel and stainless steel sheets. Journal of Materials Engineering and Performance. 2013;22(2):433-438. [Link] [DOI:10.1007/s11665-012-0256-6]
39. Karthik V, Visweswaran P, Vijayraghavan A, Kasiviswanathan KV, Raj B. Tensile-shear correlations obtained from shear punch test technique using a modified experimental approach. Journal of Nuclear Materials. 2009;393(3):425-432. [Link] [DOI:10.1016/j.jnucmat.2009.06.027]
40. Ferrero JG, Sweet SS. Evaluation of the relationship between tensile and double shear strength for various titanium alloys. In: Venkatesh V, Pilchak AL, Allison JE, Ankem S, Boyer R, Christodoulou J, editors. Proceedings of the 13th world conference on titanium. Pittsburgh PA: The Minerals, Metals & Materials Society; 2016. pp. 965-970. [Link] [DOI:10.1002/9781119296126.ch165]
41. Guduru RK, Darling KA, Kishore R, Scattergood RO, Koch CC, Murty KL. Evaluation of mechanical properties using shear-punch testing. Materials Science and Engineering A. 2005;395(1-2):307-314. [Link] [DOI:10.1016/j.msea.2004.12.048]
42. Zhang J, Nash K, Arrigoni A, Escobedo JP, Florando JN, Field DP. Hydrostatic pressure effect on mechanical behavior and texture evolution of Al and Brass. Materials Science and Engineering A. 2017;679:155-161. [Link] [DOI:10.1016/j.msea.2016.10.030]
43. Cai J, Shekhar S, Wang J, Ravi Shankar M. Nanotwinned microstructures from low stacking fault energy brass by high-rate severe plastic deformation. Scripta Materialia. 2009;60(8):599-602. [Link] [DOI:10.1016/j.scriptamat.2008.12.024]
44. Ranaei MA, Afsari A, Ahmadi Brooghani SY, Moshksar MM. Microstructure, mechanical and electrical properties of commercially pure copper deformed severely by equal channel angular pressing. Modares Mechanical Engineering. 2015;14(15):257-266. [Persian] [Link]
45. Murashkin MY, Sabirov I, Kazykhanov VU, Bobruk EV, Dubravina AA, Valiev RZ. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. Journal of Materials Science. 2013;48(13):4501-4509. [Link] [DOI:10.1007/s10853-013-7279-8]
46. Razaghani A. Introduction to the principles of dislocations and strengthening mechanisms. Mohebbi MM, editor. Qazvin: Iranian Students Booking Agency; 2012. pp. 189-192. [Persian] [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.