1. Sadeghian H, Hojjat Y, Soleimani M. Development of a new method for experimental dielectrophoresis force measurement in the microfluidic cell sorting actuators. Modares Mechanical Engineering. 2017;17(3):150-158. [Persian] [
Link]
2. Zhan Y, Wang J, Bao N, Lu C. Electroporation of cells in microfluidic droplets. Analytical Chemistry. 2009;81(5):2027-2031. [
Link] [
DOI:10.1021/ac9001172]
3. Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. Journal of Physics D Applied Physics. 2007;40(19):R319. [
Link] [
DOI:10.1088/0022-3727/40/19/R01]
4. Nekouei M, Vanapalli SA. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Physics of Fluids. 2017;29(3):032007. [
Link] [
DOI:10.1063/1.4978801]
5. Zhu P, Wang L. Passive and active droplet generation with microfluidics: A review. Lab on a Chip. 2017;17(1):34-75. [
Link] [
DOI:10.1039/C6LC01018K]
6. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab on a Chip. 2006;6(3):437-446. [
Link] [
DOI:10.1039/b510841a]
7. Wong D, Ren CL. Microfluidic droplet trapping, splitting and merging with feedback controls and state space modelling. Lab on a Chip. 2016;16(17):3317-3329. [
Link] [
DOI:10.1039/C6LC00626D]
8. Miller E, Rotea M, Rothstein JP. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab on a Chip. 2010;10(10):1293-1301. [
Link] [
DOI:10.1039/b925497h]
9. Zeng W, Li S, Wang Z. Closed-loop feedback control of droplet formation in a T-junction microdroplet generator. Sensors and Actuators A Physical. 2015;233:542-547. [
Link] [
DOI:10.1016/j.sna.2015.08.002]
10. Kim YT, Le Duc P, Messner W. Modeling and control of a nonlinear mechanism for high performance microfluidic systems. IEEE Transactions on Control Systems Technology. 2013;21(1):203-211. [
Link] [
DOI:10.1109/TCST.2011.2172445]
11. Kuczenski B, Le Duc PR, Messner WC. Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab on a Chip. 2007;7(5):647-649. [
Link] [
DOI:10.1039/b617065j]
12. Derakhshan Sh, Yazdani K. Numerical analysis of a magnetohydrodynamic micropump performance. Modares Mechanical Engineering. 2015;14(13):251-258. [Persian] [
Link]
13. Kan J, Tang K, Ren Y, Zhu G, Li P. Study on a piezohydraulic pump for linear actuators. Sensors Actuators A Physical. 2009;149(2):331-339. [
Link] [
DOI:10.1016/j.sna.2008.12.008]
14. Ebrahimi Dehshalie M, Menhaj MB, Ghasemi A, Karrari M. Finite-time distributed global optimal control for linear time-varying multi-agent systems: A dynamic output-feedback perspective. IET Control Theory & Applications. 2018;12(9):1267-1275. [
Link] [
DOI:10.1049/iet-cta.2017.0939]
15. Mondie S, Kharitonov VL. Exponential estimates for retarded time-delay systems: An LMI approach. IEEE Transactions on Automatic Control. 2005;50(2):268-273. [
Link] [
DOI:10.1109/TAC.2004.841916]
16. Anderson BDO, Moore JB. Optimal control: Linear quadratic methods. Chelmsford MA: Courier Corporation; 2007. [
Link]