Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2823-2835 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoddami Maraghi Z. Vibration Analysis of Polymer Nanocomposite-Magnetostrictive Faced Sandwich Plate Including Feedback Control System. Modares Mechanical Engineering 2019; 19 (11) :2823-2835
URL: http://mme.modares.ac.ir/article-15-25050-en.html
Mechanical Engineering Department, Engineering Faculty, Mahallat Institute of Higher Education, Mahallat, Iran , z.khoddami@mahallat.ac.ir
Abstract:   (3479 Views)

In this research, the free vibration of a sandwich plate made of smart magnetostrictive face sheets and polymer composite core is studied. The effective elastic properties of carbon nanotube-reinforced composite are obtained by the rule of the mixture and micromechanical approach. A feedback control system follows the magnetization effect of Terfenol-D films on the vibration characteristics of a sandwich plate. Considering velocity feedback control gain value, the dimensionless frequency of sandwich plate can be changed to desired values due to magneto-mechanical coupling in magnetostrictive materials. The equations of motions are derived using Reddy’s third-order shear deformation theory, energy method, and Hamilton’s principle. The differential quadrature method (DQM) as a numerical method is used for calculating the vibration frequency of the sandwich plate. This numerical method presents the optimal results using weighting coefficients. The findings of this study show the effect of the vibration control system and geometrical properties of the composite sheet on vibration frequency of structures. These findings can be used in marine, aerospace, and civil industries.

Full-Text [PDF 670 kb]   (1530 Downloads)    
Article Type: Original Research | Subject: Vibration
Received: 2018/09/12 | Accepted: 2019/05/21 | Published: 2019/11/21

1. Hristoforou E, Ktena A. Magnetostriction and magnetostrictive materials for sensing applications. Journal of Magnetism and Magnetic Materials. 2007;316(2):372-378. [Link] [DOI:10.1016/j.jmmm.2007.03.025]
2. Olabi AG, Grunwald A. Design and application of magnetostrictive ' MS ' materials. Materials & Design. 2008;29(2):469-483. [Link] [DOI:10.1016/j.matdes.2006.12.016]
3. Hong CC. Transient responses of magnetostrictive plates without shear effects. International Journal of Engineering Science. 2009;47(3):355-362. [Link] [DOI:10.1016/j.ijengsci.2008.11.004]
4. Hong CC. Transient responses of magnetostrictive plates by using the GDQ method. European Journal of Mechanics, A/Solids. 2010;29(6):1015-1021. [Link] [DOI:10.1016/j.euromechsol.2010.07.007]
5. Lee SJ, Reddy JN, Rostam-Abadi F. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elements in Analysis and Design. 2004;40(5-6):463-483. [Link] [DOI:10.1016/S0168-874X(03)00073-8]
6. Seung HM, Kim HW, Kim YY. Development of an omnidirectional shear-horizontal wave magnetostrictive patch transducer for plates. Ultrasonics. 2013;53(7):1304-1308. [Link] [DOI:10.1016/j.ultras.2013.03.015]
7. Hong CC. Thermal sinusoidal vibration and transient response of magnetostrictive functionally graded material plates without shear effects. Researches and Applications in Mechanical Engineering (RAME). 2013;2(1):11-22. [Link]
8. Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology. 2001;61(13):1899-1912. [Link] [DOI:10.1016/S0266-3538(01)00094-X]
9. Numayr KS, Haddad RH, Haddad MA. Free vibration of composite plates using the finite difference method. Thin- Walled Structures. 2004;42(3):399-414. [Link] [DOI:10.1016/j.tws.2003.07.001]
10. Wang ZX, Shen HS. Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Composites Part B: Engineering. 2012;43(2):411-21. [Link] [DOI:10.1016/j.compositesb.2011.04.040]
11. Natarajan S, Haboussi M, Manickam G. Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets. Composite Structures. 2014;113(1):197-207. [Link] [DOI:10.1016/j.compstruct.2014.03.007]
12. Nayak AK, Moy SSJ, Shenoi RA. Free vibration analysis of composite sandwich plates based on Reddy's higherorder theory. Composites Part B: Engineering. 2002;33(7):505-519. [Link] [DOI:10.1016/S1359-8368(02)00035-5]
13. Pradeep V, Ganesan N. Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates. Journal of Sound and Vibration. 2008;310(1-2):169-183. [Link] [DOI:10.1016/j.jsv.2007.07.083]
14. Ferreira AJM, Fasshauer GE, Batra RC, Rodrigues JD. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Composite Structures. 2008;86(4):328-343. [Link] [DOI:10.1016/j.compstruct.2008.07.025]
15. Li Q, Iu VP, Kou KP. Three-dimensional vibration analysis of functionally graded material sandwich plates. Journal of Sound and Vibration. 2008;311(1-2):498-515. [Link] [DOI:10.1016/j.jsv.2007.09.018]
16. Shariyat M. A double-superposition global-local theory for vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates: A complex modulus approach. Archive of Applied Mechanics. 2011;81(9):1253-1268. [Link] [DOI:10.1007/s00419-010-0483-y]
17. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering. 2013;44(1):657-674. [Link] [DOI:10.1016/j.compositesb.2012.01.089]
18. Amabili M, Karazis K, Khorshidi K. Nonlinear vibrations of rectangular laminated composite plates with different boundary conditions. International Journal of Structural Stability and Dynamics. 2011;11(4):673-695. [Link] [DOI:10.1142/S0219455411004294]
19. Khorshidi K, Farhadi S. Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid. Composite Structures. 2013;104:176-186. [Link] [DOI:10.1016/j.compstruct.2013.04.005]
20. Khorshidi K, Bakhsheshy A. Free natural frequency analysis of an FG composite rectangular plate coupled with fluid using Rayleigh-Ritz method. Mechanics of Advanced Composite Structures. 2014;1(2):131-143. [Link]
21. Hong CC. Application of a magnetostrictive actuator. Materials & Design, 2013;46:617-621. [Link] [DOI:10.1016/j.matdes.2012.11.013]
22. Lu XY, Li H. Magnetic properties of Terfenol-D film on a compliant substrate. Journal of Magnetism and Magnetic Materials. 2010;322(15):2113-2116. [Link] [DOI:10.1016/j.jmmm.2010.01.043]
23. Ghorbanpour Arani A, Khoddami Maraghi Z. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory. Ain Shams Engineering Journal. 2016;7(1):361-369. [Link] [DOI:10.1016/j.asej.2015.04.010]
24. Ghorbanpour Arani MR, Khoddami Maraghi Z. Effect of follower force on vibration frequency of magneto-strictive-faced sandwich plate with CNTR composite core. Journal of Solid Mechanics. 2018;10(4):688-701. [Link]
25. Esawi AMK, Farag MM. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design. 2007;28(9):2394-2401. [Link] [DOI:10.1016/j.matdes.2006.09.022]
26. Panda S, Ray MC. Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber reinforced composites. Journal of Sound and Vibration. 2009;325(1-2):186-205. [Link] [DOI:10.1016/j.jsv.2009.03.016]
27. Lei ZX, Liew KM, Yu JL. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp -Ritz method in thermal environment. Composite Structures. 2013;106:128-138. [Link] [DOI:10.1016/j.compstruct.2013.06.003]
28. Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science. 2007;39(2):315-323. [Link] [DOI:10.1016/j.commatsci.2006.06.011]
29. Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering. 2004;193(17-20):1773-1788. [Link] [DOI:10.1016/j.cma.2003.12.025]
30. Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing. 2005;36(11):1555-1561. [Link] [DOI:10.1016/j.compositesa.2005.02.006]
31. Ghorbanpour Arani A, Khoddami Maraghi Z, Khani Arani H. Smart vibration control of magnetostrictive nano-plate using nonlocal continuum theory. Journal of Solid Mechanics. 2016;8(2):300-314. [Link]
32. Shu C, Du H. Free vibration analysis of laminated composite cylindrical shells by DQM. Composites Part B: Engineering. 1997;28(3):267-274. [Link] [DOI:10.1016/S1359-8368(96)00052-2]
33. Akavci SS. An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation. Composite Structures. 2014;108:667-676. [Link] [DOI:10.1016/j.compstruct.2013.10.019]
34. Jang SK, Bert CW, Striz AG. Application of differential quadrature to static analysis of structural components. International Journal for Numerical Methods in Engineering. 1989;28(3):561-577. [Link] [DOI:10.1002/nme.1620280306]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.