Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2599-2606 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassanzadeh R, Mohammadnejad M. تاثیر اندازه هم‌پوشانی بر عملکرد توربین بادی محور عمودی ساونیوس در دو مدل متعارف و باخ. Modares Mechanical Engineering 2019; 19 (11) :2599-2606
URL: http://mme.modares.ac.ir/article-15-25132-en.html
1- Mechanical Engineering Faculty, Urmia University of Technology, Urmia, Iran , hassanzadeh.rahim@gmail.com
2- Mechanical Engineering Faculty, Urmia University of Technology, Urmia, Iran
Abstract:   (3730 Views)
In the present research, the effects of the internal overlap ratio on the performance of a two-blade vertical axis Savonius wind turbine is investigated using numerical simulation. Considerations are performed on both conventional and Bach-type rotors. For this purpose, the power characteristics of the wind turbine are examined under tip speed ratios ranging from 0.2 to 1.2 and wind speeds of 3, 5, and 7 m/s. In order to capture the turbulence characteristics, SST k-ω model is used and the obtained results are validated against the available data in the open literature. The instantaneous behavior of flow and the time-averaged data are presented for both conventional and Bach-type rotors. The obtained results of the research reveal that for all tip speed ratios and wind speeds, the optimum overlap ratio for conventional and Bach types rotors, respectively. On the other hand, regardless of the wind speed and overlap ratio, the maximum power coefficients are obtained in tip speed ratios of 0.8 and 0.7 for conventional and Bach-type rotors, respectively. Finally, it is found that in all tip speed and overlap ratios, in both rotors, the power coefficient increases with increasing the wind speed.    
Full-Text [PDF 1389 kb]   (1654 Downloads)    
Article Type: Original Research | Subject: Marine Structures
Received: 2018/05/14 | Accepted: 2019/05/21 | Published: 2019/11/21

1. 1-. Savonius SJ.. The S-rotor and its application. Mechanical Engineering. 1931;53:333-338. [Link]
2. Damak A, Driss Z, Abid MS. Optimization of the helical Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics. 2018;174:80-93. [Link] [DOI:10.1016/j.jweia.2017.12.022]
3. Hassanzadeh R, Yaakob O, Taheri MM, Hosseinzadehe M, Ahmed YM. An innovative configuration for new marine current turbine. Renewable Energy. 2018;120:413-422. [Link] [DOI:10.1016/j.renene.2017.11.095]
4. Ferrari G, Federici D, Schito P, Inzoli F, Mereu R. CFD study of Savonius wind turbine:3D model validation and parametric analysis. Renewable Energy. 2017;105:722-734. [Link] [DOI:10.1016/j.renene.2016.12.077]
5. Kacprzak K, Liskiewicz G, Sobczak K. Numerical investigation of conventional and modified Savonius wind turbines. Renewable Energy. 2013;60:578-585. [Link] [DOI:10.1016/j.renene.2013.06.009]
6. Amiri M, Kahrom M, Kianifar A. Numerical and experimental investigation on effects of the primary and secondary overlaps on the performance of Savonius wind turbine. Modares Mechanical Engineering. 2015;15(6):123-131. [Persian] [Link]
7. Mereu R, Federici D, Ferrari G, Schito P, Inzoli F. Parametric numerical study of Savonius wind turbine interaction in a linear array. Renewable Energy. 2017;113:1320-1332. [Link] [DOI:10.1016/j.renene.2017.06.094]
8. Al-Kayiem HH, Bhayo BA, Assadi M. Comparative critique on the design parameters and their effect on the performance of S-rotor. Renewable Energy. 2016;99:1306-1317. [Link] [DOI:10.1016/j.renene.2016.07.015]
9. Roy S, Ducoin A. Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Conversion and Management. 2016;121:281-296. [Link] [DOI:10.1016/j.enconman.2016.05.044]
10. Jeon KS, Jeong JI, Pan JK, Ryu KW. Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy. 2015;79:167-176. [Link] [DOI:10.1016/j.renene.2014.11.035]
11. Sharma S, Kumar Sharma R. Performance improvement of Savonius rotor using multiple quarter blades - A CFD investigation. Energy Conversion and Management. 2016;127:43-54. [Link] [DOI:10.1016/j.enconman.2016.08.087]
12. Zhang B, Song B, Mao Zh, Tian W. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines. Energy. 2017;121:341-355. [Link] [DOI:10.1016/j.energy.2017.01.004]
13. Shaheen M, Abdallah Sh. Development of efficient vertical axis wind turbine clustered farms. Renewable and Sustainable Energy Reviews. 2016;63:237-244. [Link] [DOI:10.1016/j.rser.2016.05.062]
14. Wenehenubuna F, Saputraa A, Sutanto H. An experimental study on the performance of Savonius wind turbines related with the number of blades. Energy Procedia. 2015;68:297-304. [Link] [DOI:10.1016/j.egypro.2015.03.259]
15. Ali MH. Experimental comparison study for Savonius wind turbine of two & three blades at low wind speed. International Journal of Modern Engineering Research (IJMER). 2013;3(5):2978-2986. [Link]
16. Debnath P. Flow physics analysis of three-bucket helical Savonius rotor at 90ᵒ twist angle using CFD. International Journal of Modern Engineering Research (IJMER). 2013;3(2):739-746. [Link]
17. Saha UK, Thotla S, Maity D. Optimum design configuration of Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics. 2008;96(8-9):1359-1375. [Link] [DOI:10.1016/j.jweia.2008.03.005]
18. Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy. 2015;137:117-125. [Link] [DOI:10.1016/j.apenergy.2014.10.022]
19. Lee JH, Lee YT, Lim HC. Effect of twist angle on the performance of Savonius wind turbine. Renewable Energy. 2016;89:231-244. [Link] [DOI:10.1016/j.renene.2015.12.012]
20. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. The American Institute of Aeronautics and Astronautics Journal. 1994;32(8):1598-1605. [Link] [DOI:10.2514/3.12149]
21. Elbatran AH, Ahmed YM, Shehata AS. Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy. 2017;134:566-584. [Link] [DOI:10.1016/j.energy.2017.06.041]
22. Blackwell BF, Sheldahl RE, Feltz LV. Wind tunnel performance data for two- and three-bucket Savonius rotors. Technichal Report. Albuquerque: Sandia Labs; 1977. Report No: SAND-76-0131. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.