1. Chen C, Cho CC. Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluidics and Nanofluidics. 2008;5(6):785-793. [
Link] [
DOI:10.1007/s10404-008-0286-4]
2. Hardt S, Schönfeld F. Microfluidic technologies for miniaturized analysis systems. Switzerland: Springer; 2007. [
Link] [
DOI:10.1007/978-0-387-68424-6]
3. Kler PA. Modeling and simulation of microfluidic chips for analytical applications [Dissertation]. Santa Fe, Argentina: National University of the Littoral; 2010. [
Link]
4. Lim CY, Lam YC. Analysis on micro-mixing enhancement through a constriction under time periodic electroosmotic flow. Microfluidics and Nanofluidics. 2012;12(1-4):127-141. [
Link] [
DOI:10.1007/s10404-011-0856-8]
5. Lynn NS, Henry CS, Dandy DS. Microfluidic mixing via transverse electrokinetic effects in a planar microchannel. Microfluidics and Nanofluidics. 2008;5(4):493-505. [
Link] [
DOI:10.1007/s10404-008-0258-8]
6. Melin J, Giménez G, Roxhed N, van der Wijngaart W, Stemme G. A fast passive and planar liquid sample micromixer. Lab on a Chip. 2004;4(3):214-219. [
Link] [
DOI:10.1039/B314080F]
7. Chao K, Chen B, Wu J. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomedical Microdevices. 2010;12(6):959-66. [
Link] [
DOI:10.1007/s10544-010-9450-1]
8. Zhao C, Yang C. Advances in electrokinetics and their applications in micro/nano fluidics. Microfluidics and Nanofluidics. 2012;13(2):179-203. [
Link] [
DOI:10.1007/s10404-012-0971-1]
9. Glasgow I, Batton J, Aubry N. Electroosmotic mixing in microchannels. Lab on a Chip. 2004;4(6):558-562. [
Link] [
DOI:10.1039/b408875a]
10. Erickson D, Li D. Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir. 2002;18(23):8949-8959. [
Link] [
DOI:10.1021/la025942r]
11. Cheng Y, Jiang Y, Wang W. Numerical simulation for electro-osmotic mixing under three types of periodic potentials in a T-shaped micro-mixer. Chemical Engineering and Processing-Process Intensification. 2018;127:93-102. [
Link] [
DOI:10.1016/j.cep.2018.03.017]
12. Shamloo A, Mirzakhanloo M, Dabirzadeh MR. Numerical simulation for efficient mixing of newtonian and non-newtonian fluids in an electro-osmotic micro-mixer. Chemical Engineering and Processing: Process Intensification. 2016;107:11-20. [
Link] [
DOI:10.1016/j.cep.2016.06.003]
13. Barman U, Sen AK, Mishra SC. Theoretical and numerical investigations of an electroosmotic flow micropump with interdigitated electrodes. Microsystem Technologies. 2014;20(1):157-168. [
Link] [
DOI:10.1007/s00542-013-1893-x]
14. Lin JL, Lee KH, Lee GB. Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes. Journal of Micromechanics and Microengineering. 2006;16(4):757. [
Link] [
DOI:10.1088/0960-1317/16/4/012]
15. Chen H, Zhang Y, Mezic I, Meinhart C, Petzold L. Numerical simulation of an electroosmotic micromixer. A SME 2003 International Mechanical Engineering Congress and Exposition. Washington, DC: American Society of Mechanical Engineers; 2003. [
Link] [
DOI:10.1115/IMECE2003-55017]
16. Bera S, Bhattacharyya S. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel. Theoretical and Computational Fluid Dynamics. 2018;32(2):201-214. [
Link] [
DOI:10.1007/s00162-017-0448-7]
17. Kang S, Suh YK. Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson-Nernst-Planck model. Microfluidics and Nanofluidics. 2009;6(4):461-477. [
Link] [
DOI:10.1007/s10404-008-0321-5]
18. Sani M, Saidi MS. Rayan: A polyhedral grid co-located incompressible finite volume solver (part I: basic design features). Scientia Iranica. 2010;17(6):443-455. [
Link]
19. Sani M, Saidi MS. A set of particle locating algorithms not requiring face belonging to cell connectivity data. Journal of Computational Physics. 2009;228(19):7357-7367. [
Link] [
DOI:10.1016/j.jcp.2009.06.031]
20. Sani M, Saidi MS. A lagged implicit segregated data reconstruction procedure to treat open boundaries. Journal of Computational Physics. 2010;229(14):5418-5431. [
Link] [
DOI:10.1016/j.jcp.2010.04.005]
21. Nayak A. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential. International Journal of Heat and Mass Transfer. 2014;75:135-144. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2014.03.057]
22. Masliyah JH, Bhattacharjee S. Electrokinetic and colloid transport phenomena. Hoboken, New Jersey: John Wiley & Sons; 2006. [
Link] [
DOI:10.1002/0471799742]
23. Park HM, Lee JS, Kim TW. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels. Journal of Colloid and Interface Science. 2007;315(2):731-739. [
Link] [
DOI:10.1016/j.jcis.2007.07.007]
24. Park HM, Choi YJ. Electroosmotic flow driven by oscillating zeta potentials: Comparison of the Poisson-Boltzmann model, the Debye-Hückel model and the Nernst-Planck model. International Journal of Heat and Mass Transfer. 2009;52(19-20):4279-4295. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2009.04.022]
25. Goullet A, Glasgow I, Aubry N. Effects of microchannel geometry on pulsed flow mixing. Mechanics Research Communications. 2006;33(5):739-746. [
Link] [
DOI:10.1016/j.mechrescom.2006.01.007]
26. Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. Journal of Colloid and Interface Science. 2006;296(2):729-736. [
Link] [
DOI:10.1016/j.jcis.2005.09.042]
27. Luo WJ. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities. Journal of Colloid and Interface Science. 2006;295(2):551-561. [
Link] [
DOI:10.1016/j.jcis.2005.09.052]