Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1199-1208 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Momeni V, Alaei M. Optimization of Injection Parameters in Metal Injection Molding of 4605 Low Alloy Steel. Modares Mechanical Engineering 2019; 19 (5) :1199-1208
URL: http://mme.modares.ac.ir/article-15-25762-en.html
1- Mechanical Engineering Department, Mechanical Engineering Faculty, Malek Ashtar University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, Malek Ashtar University of Technology, Tehran, Iran , mhallaee@mut.ac.ir
Abstract:   (5414 Views)
Metal injection molding (MIM) is a novel process classified in powder metallurgy. This process can produce complex metallic parts with high rate of production and consists of four stages, including mixing, injection, debinding, and sintering, where the properties of the final part highly depends on the parameters of each of these stages. In this study, the parameters of injection pressure, injection and mold temperature, holding pressure, holding time, injection speed, and cooling time on the density, strength, and hardness of the final MIM compact have been investigated. By the design of experiments and response surface methodology (RSM) method, 50 samples have been injected using different parameters. In order to measure the density, tensile strength, ad hardness of the samples, the debinding and sintering procedures have been done on the injected samples. The results show that the injection pressure, injection temperature, and mold temperature have the highest effect on the strength and density of the final part, respectively, and on the other hand, holding pressure, holding time, and cooling time have a negligible effect. Within the measured properties, density and strength are more affected by the injection parameters compared to hardness. Finally, the optimum injection parameters for samples made of 4605 low alloy steel include injection pressure of 133 bar, injection temperature of 158, mold temperature of 60, the holding pressure of 70 bar, holding time of 8 second, injection speed of 112 mm/min, and cooling cycle of 17 second.
Full-Text [PDF 1034 kb]   (3499 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/10/3 | Accepted: 2019/01/5 | Published: 2019/05/1

References
1. Berginc B, Kampus Z, Sustarsic B. Influence of feedstock characteristics and process parameters on properties of MIM parts made of 316L. Powder Metallurgy. 2007;50(2):172-183. [Link] [DOI:10.1179/174329007X164862]
2. Huang MS, Hsu HC. Influence of injection moulding and sintering parameters on properties of 316L MIM compact. Powder Metallurgy. 2011;54(3):299-307. [Link] [DOI:10.1179/003258909X12502679013819]
3. Lin KH. Wear behavior and mechanical performance of metal injection molded Fe-2Ni sintered components. Materials and Design. 2011;32(3):1273-1282. [Link] [DOI:10.1016/j.matdes.2010.09.034]
4. Sulong AB, Muhamad N, Arifin A, Yong KB. Optimizing injection parameter of metal injection molding processes using the feedstock of 16 μm stainless steel powder (SS316L), PEG, PMMA and stearic acid. Journal of Applied Sciences Research. 2012;8(6):2998-3003. [Link]
5. Fang W, He XB, Zhang RJ, Yang SD, Qu XH. Evolution of stresses in metal injection molding parts during sintering. Transactions of Nonferrous Metals Society of China. 2015;25(2):552-558. [Link] [DOI:10.1016/S1003-6326(15)63637-8]
6. Yang Sh, Zhang R, Qu X. Optimization and evaluation of metal injection molding by using X-ray tomography. Materials Characterization. 2015;104:107-115. [Link] [DOI:10.1016/j.matchar.2015.04.014]
7. Lou J, Li Y, He H, Li D, Wang G, Feng J, et al. Interface development and numerical simulation of powder co-injection moulding. Part. I. Experimental results on the flow behaviour and die filling process. Powder Technology. 2017;305:405-410. [Link] [DOI:10.1016/j.powtec.2016.10.015]
8. Li YM, Liu XQ, Luo FH, Yue JL. Effects of surfactant on properties of MIM feedstock. Transactions of Nonferrous Metals Society of China. 2007;17(1):1-8. [Link] [DOI:10.1016/S1003-6326(07)60039-9]
9. Aggarwal G, Park SJ, Smid I, German RM. Master decomposition curve for binders used in powder injection molding. Metallurgical and Materials Transactions A. 2007;38(3):606-614. [Link] [DOI:10.1007/s11661-007-9102-0]
10. Hashikawa R, Osada T, Kudo K, Tsumori F, Miura H. Control the distortion of the large and complex shaped parts by the metal injection molding process. Journal of the Japan Society of Powder and Powder Metallurgy. 2016;63(7):473-478. [Link] [DOI:10.2497/jjspm.63.473]
11. Heaney DF, editor. Handbook of metal injection molding. Amsterdam: Elsevier Science; 2012. [Link] [DOI:10.1533/9780857096234]
12. Kong X, Barriere T, Gelin JC. Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding. Journal of Materials Processing Technology. 2012;212(11):2173-2182. [Link] [DOI:10.1016/j.jmatprotec.2012.05.023]
13. Mustafa N, Ibrahim MH, Amin AM, Asmawi R. Parameter optimization of natural hydroxyapatite/SS316L via metal injection molding (MIM). IOP Conference Series Materials Science and Engineering. 2017;165:012015. [Link] [DOI:10.1088/1757-899X/165/1/012015]
14. Özgün Ö, Gülsoy HÖ, Yılmaz R, Fındık F. Microstructural and mechanical characterization of injection molded 718 superalloy powders. Journal of Alloys and Compounds. 2013;576:140-153. [Link] [DOI:10.1016/j.jallcom.2013.04.042]
15. Wang X, Li H, Gu J, Li Z, Ruan Sh, Shen Ch, et al. Pressure analysis of dynamic injection molding and process parameter optimization for reducing warpage of injection molded products. Polymers. 2017;9(3):85. [Link] [DOI:10.3390/polym9030085]
16. Hakimi Chua MI, Sulong AB, Muhamad N, Abdullah MF, Che Haron CH. Optimization of injection parameters using 16µm stainless steel powder (SS316L) at 63 Vol.%, 63.5 Vol.% and 64 Vol.% powder loading by Taguchi Method for metal injection molding. Key Engineering Materials. 2011;471-472:558-562. [Link] [DOI:10.4028/www.scientific.net/KEM.471-472.558]
17. Jamaludin KR, Muhamad N, Rahman MN, Ahmad S, Ibrahim MH, Nor NH, et al. Application of the Grey-Taguchi method to the optimization of Metal Injection Molding (MIM) process. Key Engineering Materials. 2010;443:63-68. [Link] [DOI:10.4028/www.scientific.net/KEM.443.63]
18. Ibrahim MHI, Muhamad N, Sulong AB, Ahmad S, Nor NHM. Optimization of micro metal injection molding for highest green strength by using Taguchi method. International Journal of Mechanical and Materials Engineering. 2010;5(2):282-289. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.